REMEDIAL ACTION PLAN HAYWARD PARK CALTRAIN STATION 401 Concar Drive San Mateo, California SMCEH Case No. 119191

May 2022

Prepared for: HPS – San Mateo, LLC 901 Mariners Island Boulevard, Suite 700 San Mateo, California 94404

Prepared by

711 Grand Avenue, Suite 220 San Rafael, California 94901 415/460-6770 Fax 415/460-6771 main@westenvironmental.com

TABLE OF CONTENTS

SECTION

PAGE

1.0	INTRODUCTION	.1
1.1	BACKGROUND	1
1.1	REMEDIAL PLAN ORGANIZATION	
2.0	SITE DESCRIPTION	.4
2.1	GEOLOGIC SETTING	4
2.2	Hydrogeologic Setting	5
2.3	SITE HISTORY	6
2.	3.1 Leslie Salt	6
2.	3.2 L.C. Smith Asphalt Company	
2.4		
	4.1 Station Park Green Project - 1700 South Delaware	
	4.2 470 Concar Drive	
	4.3 Vail Burner & Oil Company - 1741 Leslie Street	
2.5	SURFACE WATER	
2.6	SITE USE	10
3.0	SUMMARY OF INVESTIGATIONS	11
2 1		
3.1	PREVIOUS INVESTIGATIONS.	
	 1.1 Soil, Soil Gas and Groundwater Sampling - 2016 1.2 Soil and Groundwater Investigations – 2019-2021 	
	<i>1.2 Soil and Groundwater Investigations – 2019-2021</i> RECENT INVESTIGATIONS	
	2.1 Soil Sampling	
	2.1 Soli Sampling 2.2 Soil Gas Sampling	
	2.2 Soli Gas sampling 2.3 Depth-Discrete Groundwater Sampling	
	2.3 Depin-Discrete Groundwater Sampling	
4.0	DATA EVALUATION	24
4.1	CONCEPTUAL SITE MODEL	24
4.	1.1 Nature of Site Groundwater	25
4.2	SCREENING LEVEL ASSESSMENT	
	2.1 Current and Future Potential Exposure Pathways	
	2.2 Tier 2 ESL Soil Screening Levels	
	2.3 Tier 2 Soil Gas Analysis	
	2.4 Tier 2 Groundwater Screening Levels	
	2.5 Background Concentrations	
4.3	COMPARATIVE ANALYSIS	
	3.1 Soil Conditions	
	3.2 Soil Gas Conditions	
	3.3 Groundwater Conditions	
	3.4 Data Gap Analysis	
	3.5 Soil Remedial Goals	
	 3.6 Soil Gas Remedial Goals 3.7 Groundwater Remedial Goals 	
5.0	REMEDIAL ACTION IMPLEMENTATION	45

TABLE OF CONTENTS

SECTION

PAGE

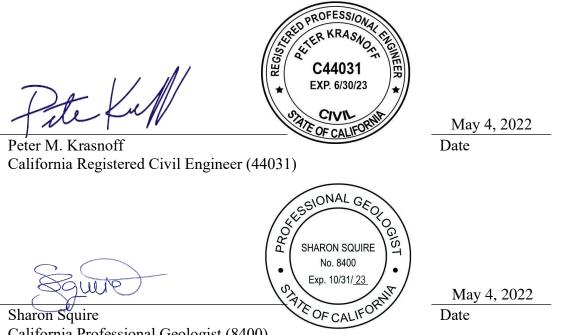
	IEDIAL ACTION PLAN OBJECTIVES REMEDIAL ACTION IMPLEMENTATION ACTIVITIES	
5.2.1	Public Participation	
5.2.2	Permitting	
5.2.2	Health and Safety	
5.2.3	Utility Clearance	
5.2.4	Storm Water Controls	
	EDIAL ACTION IMPLEMENTATION	
531	Site Control	
532	Monitoring Well Destruction	
533	Soil Excavation	
5.3.4	Soil Handling	
5.3.5	Post-Excavation Soil Sampling	
5.3.6		
5.3.0	Engineered Fill Post Backfill Soil Gas Sampling	
5.3.7		
5.3.8	Contingent Vapor Intrusion Mitigation System	
0.0.0	Post-Construction Monitoring	
5.4 KEM	IEDIAL ACTION IMPLEMENTATION REPORT	
6.0 RE	FERENCES	
7.0 DIS	STRIBUTION LIST	60

LIST OF TABLES

Table 2-1	Summary of Groundwater Elevation Data
Table 3-1	Summary of Soil Analytical Results - TPH and VOCs
Table 3-2	Summary of Soil Analytical Results - SVOCs, Pesticides and PCBs
Table 3-3	Summary of Soil Analytical Results - Metals
Table 3-4	Summary of Groundwater Analytical Results - TPH and VOCs
Table 3-5	Summary of Soil Gas Analytical Results - VOCs

LIST OF FIGURES

- Figure 1-1 Site Location Map
- Figure 1-2 Site Layout
- Figure 2-1 Site Development Area
- Figure 3-1 Site Detail and Sampling Locations
- Figure 3-2 Summary of Soil Analytical Data
- Figure 4-1 Exposure Pathways Chart
- Figure 5-1 Contingent Vapor Barrier Location


LIST OF APPENDICES

- Appendix A Selected Development Plans
- Appendix B Boring Logs
- Appendix C Field Data Forms
- Appendix D Laboratory Analytical Data and Chain-of-Custody Forms

SIGNATURE PAGE

All information, conclusions and recommendations contained in this report have been prepared under the supervision of the undersigned professional(s).

California Professional Geologist (8400)

1.0 INTRODUCTION

This *Remedial Action Plan* ("*RAP*") has been prepared by West Environmental Services & Technology, Inc., (WEST) for the Hayward Park Caltrain Station property located at 401 Concar Drive in San Mateo, California ("the Site; Figure 1-1"). This *RAP* presents a summary of: Site and surrounding property histories; subsurface investigations; a comparison of Site data with applicable screening levels; development of remedial goals; and proposed remedial actions.

1.1 BACKGROUND

The Site is located on a triangular portion of land that is currently used as the Hayward Park Caltrain station with associated parking areas. L.C. Smith Company Asphalt Plant was historically located on the Site and the eastern portion of the adjacent property located at 1700 South Delaware Street. In 2018, the Peninsula Corridor Joint Power Board (PCJPB) approved development of the Hayward Park Caltrain Station into a mixed commercial-residential property with subterranean parking.

The adjacent property at 1700 South Delaware Street has been redeveloped for mixed-use commercial and residential use as part of the Station Park Green Project, with San Mateo County Environmental Health Services Division (SMCEH) as the lead agency for oversight (Case No. 119181). Laboratory analysis of soil and groundwater samples collected during pre-development sampling at the Station Park Green Project border with the Site revealed total petroleum hydrocarbons (TPH), including diesel (TPHd) up to: 4,100 milligrams per kilogram (mg/kg) in soil (B-30); and 120,000 micrograms per liter (μ g/l) in groundwater (B-12). Laboratory analysis of samples revealed TPH in the motor oil range (TPHmo) up to 30,000 mg/kg in soil (B-30) and 8,700 μ g/l (B-12) in groundwater; and TPH in the gasoline range (TPHg) up to 340 mg/kg in soil (B-30) and 19,000 μ g/l (B-12) in groundwater.

On January 20, 2016 SMCEH emailed PCJPB with a concern that contamination removed from soil at the Station Park Green Project boundary with the Site "appeared to extend or originate

from the Caltrain parking lot" and that L.C. Smith operated an asphalt plant predominantly on the Site until the 1970s (SMCEH, 2016).

In May 2016, WEST advanced 24 borings at the Site to support redevelopment of the Site. The sampling data from the May 2016 investigation revealed the presence of TPHd in: soil up to 14,700 mg/kg; and groundwater up to 11,700 μ g/l (W-12). The investigation also revealed the presence of: lead in soil up to 2,610 mg/kg; and pesticides and semi-volatile organic compounds in soil.

On April 18, 2018, the SMCEH opened environmental oversight Case File 119191 under its Voluntary Cleanup Program for the Site to address the presence of diesel and motor oil. On October 16, 2018, SMCEH requested a scope-of-work to define the lateral and vertical extent of contamination at the Site. On behalf of the PCJPB, ERM of Walnut Creek, California submitted its *Work Plan* for subsurface investigations of the Site on January 4, 2018 (ERM, 2018). The *Work Plan* presented a summary of the WEST 2016 data and proposed advancing eight additional soil borings at the Site for collection of soil and groundwater samples for analysis of TPHg, TPHd, TPHmo and the petroleum related volatile organic compounds, benzene, toluene, ethyl benzene and xylenes (ERM, 2018). Subsequently, ERM, on behalf of the JPB installed and sampled groundwater-monitoring wells in 2021.

In October 2021, WEST prepared its *Supplemental Site Investigation Work Plan (SSIWP)* to address data gaps, including: delineating the extent of chemicals in soil above applicable screening levels; collection of additional soil gas data to evaluate temporal variability in concentrations; and sampling of groundwater-monitoring wells to verify previous findings.

The Site is currently planned for development including the construction of a multi-story podium style mixed-use structure, with commercial uses at-grade and residential above. In addition, portions of the Site, including at-grade portions of the building, will continue to be used for parking.

Based on the findings from the investigations, WEST has developed this *RAP* to address the presence of: TPHd in soil; and trichloroethene (TCE), chloroethene (CE; also known as vinyl chloride), 1,2-dichloroethene (1,2-DCA), benzene, ethyl benzene and naphthalene in soil gas. The proposed remedial actions include: excavating soil above remedial goals; post excavation confirmation soil sampling; and backfilling with engineered fill. Following backfill, soil gas sampling will also be conducted to determine the need for a contingent vapor intrusion mitigation system (VIMS) beneath occupied portions of the ground floor of the proposed building. Following remediation, institutional controls will be implemented to limit future sub-surface activities on the Site.

1.2 REMEDIAL PLAN ORGANIZATION

The Remedial Action Plan is organized as follows:

- Site Description (Section 2.0);
- Summary of Investigations (Section 3.0);
- Data Evaluation (Section 4.0); and
- Remedial Plan Implementation (Section 5.0).

2.0 SITE DESCRIPTION

The approximately 2.81-acre Site is located at 401 Concar Drive in San Mateo, California with assessors parcel number 035200998. The Site is relatively flat at approximately 8-feet above mean sea level (MSL) with a gently slope toward San Francisco Bay to the east. The Site is currently used for the Hayward Park Caltrain station with associated parking areas, but future development is contemplated for a mixed commercial-residential property with potential subterranean parking. The Site is bounded by: the railroad corridor owned by the PCJPB to the west; Concar Drive and Highway CA 92 to the south; Station Park Green Redevelopment project to the east; and a grassy area adjacent to the railroad to the north.

2.1 GEOLOGIC SETTING

The Site is located in the Santa Clara Valley Groundwater Basin - San Mateo subbasin, which occupies a structural trough, sub-parallel to the northwest trending Coast Ranges, at the southwest end of San Francisco Bay. San Francisco Bay constitutes its eastern boundary. The Santa Cruz Mountains form the western margin of the San Mateo basin. The basin is composed of alluvial fan deposits formed by tributaries to San Francisco Bay, that drain the basin (DWR, 2004). Alluvium was encountered at the property immediately west of the Site to approximately 60-feet below ground surface (GeoCon, 2016).

The Site was historically bay margin marshland. Filling of the area near the Site occurred from the 1920s to the 1930s. The 1939 United States Geological Survey (USGS) topographic map for the Site showed that properties to the east of the Site were bermed marshland (i.e., Station Park Green). The geology, encountered in borings advanced at the Site to approximately 15-feet below ground surface, was unconsolidated clay, silty clay, gravelly clay, silts, sandy clay/silts, clayey sand and sand, which has been characterized as fill material. Investigations on adjacent properties have identified that Bay Mud has been encountered in boreholes below 10-feet deep (CEC, 1992).

2.2 HYDROGEOLOGIC SETTING

The water bearing formations of the San Mateo subbasin are comprised of the Santa Clara Formation of Plio-Pleistocene age and the Quaternary age alluvial deposits. The Quaternary alluvium constitutes the most important water bearing formation and is composed of gravel, sand, silt and clay with various grain size distributions dependent on the depositional environment. Maximum thickness attained by the Quaternary alluvium is approximately 1,250 feet (DWR, 2004).

Groundwater in the area occurs in two separate shallow zones. Shallow perched water occurs at the interface between the fill and the bay mud at an average depth of 6.5-feet below ground surface (CEC, 1992). An approximately one-foot thick discontinuous sand is observed between 10-feet and 13-feet below ground surface. Groundwater flow in the shallow perched zone has been characterized as highly variable due most likely to the variations in the Bay Mud slope (GGTR, 2005). Depth to water in the shallow (up to 12-feet below ground surface) groundwater monitoring wells during February 2022 (MW-1 to MW-9) was reported at 2.92-feet (MW-5) to 6.13-feet (MW-7) below top of casing, with elevations reported at 3.56-feet (MW-7) to 7.61-feet (MW-5) Mean Sea Level (MSL; Table 2-1).

A deeper water-bearing zone occurs beneath the Bay Mud aquiclude. The deeper zone is reported to contain highly saline water. Water in the area has been reported to be influenced by tidal fluctuations and saline (CEC, 1992).

The extent of perched groundwater is also highly variable in the area. Groundwater was not encountered in excavations up to 17-feet deep following excavation activities at the neighboring 1700 South Delaware Street property (Geocon, 2016). While seepage of water was observed into a test pit, it was attributed to "relict storm drain located along west property boundary" at approximately eight-feet below ground surface; it did yield more than 10-gallons and was suspected to have been released from granular storm drain bedding (Geocon, 2016). Similarly, sampling at the former Exxon service station at 1801 S. Delaware Street showed highly variable

perched groundwater flow, which is "most commonly flat with radial-outward flow along the perimeter" due to perching of groundwater in site excavations (ERI, 2009).

2.3 SITE HISTORY

Prior to the 1940s, the Site and surrounding area were marshlands. Beginning in the 1940s, filling of the marshlands began. The Site had a rail spur (1900s to 1960s) that was connected to the Southern Pacific Railroad (currently Union Pacific Railroad) main line located to the southwest and used by the Leslie Salt Refining Company, C.E. Whitney Chemical Company and the L.C. Smith Asphalt Company for transporting bulk materials and refined products. The rail spur was removed in the 1960s for development of the Hayward Park Caltrain station. Highway 92 was also constructed during the 1960s to the south of the Site. The PCJPB purchased the Site in 1992 from the Union Pacific Railroad and continued to operate as a train station.

2.3.1 Leslie Salt

In 1903, C. E. Whitney bought land "east of the railroad tracks in San Mateo and developed a salt-evaporating business."¹ C. E. Whitney Chemical Company operated a chemical plant on and adjacent to the Site beginning in the early 1900s (Figure 1-2). The Whitney Chemical Company manufactured epsom salts, magnesium chloride and potassium chloride from bay water. The company worked in conjunction with the Leslie Salt Refining Company. Bay water was evaporated in ponds and the salt removed, and the potassium and magnesium salts were obtained from the remaining liquor (CME, 1916).

In 1907, three of the largest salt producers, Shilling, Stauffer Chemical Company and Leslie formed Leslie Salt Company, which consolidated Leslie and Stauffer salt holdings in the west bay under one name. The San Mateo refinery operated until 1941, when the Leslie Salt Company replaced it with a plant at Newark, California (USFW, 2009).

 $^{1\} https://www.smdailyjournal.com/news/local/from-leslie-salt-to-cargill/article_a256ffbb-fb02-552b-a82b-4c9a17063d0b.html$

While Leslie Salt's manufacturing operations near the Site are not well documented, the Newark, California's plant included the production of the leaded fuel additive, 1,2-dibromoethane (ethylene dibromide) from bay water bittern (Regional Water Board, 2015). In addition, 1,2-dibromoethane can be formed naturally in salt water from algae growth (USEPA, 1998).

2.3.2 L.C. Smith Asphalt Company

Between the 1950s and 1960s, the L.C. Smith Asphalt Company operated an asphalt plant on the Site and adjacent Station Park Green Project property located at 1700 South Delaware Street. The 1961 and 1969 Sanborn maps indicate the following asphalt plant features: hot asphalt mixing plant; gravel bunker; four aboveground storage tanks for oil and asphaltic cement: boiler house; dust house; oil heater house; switch house; dust collection bins; tool and welding sheds; equipment repair facilities; storage yards; and a scale house (EDR, 2011). City of San Mateo Fire Department records revealed that three underground storage tanks were installed at the asphalt plant in 1961. These USTs and four additional aboveground tanks for fuel oil and asphalt were demolished by Concar Enterprises in 1973 (Versar, 2014). The 1974 aerial photograph indicates that the Site had been developed as it exists today and the L.C. Smith asphalt Company was no longer present.

2.4 SURROUNDING AREAS

The Site is surrounded by: the Station Park Green Project property located at 1700 South Delaware Street to the east; 470 Concar Drive to the southwest; and the Caltran station located to the west.

2.4.1 Station Park Green Project - 1700 South Delaware

The 11.9-acre Station Park Green Project located at 1700 South Delaware is on the eastern property boundary of the Site. Historical uses of the Site included: L.C. Smith Asphalt Company asphalt plant; sand and gravel operations; former Shell Branded Service Station; former

Montgomery Ward Auto Service Center; and Kmart. Remedial actions, consisting of removing 22,770 tons of soil, were conducted at the Station Park Green Project and redeveloped as a mixed use, multi-family residential development constructed at-grade (GeoCon, 2016). The Station Park Green Project was closed by the SMCEH on September 30, 2016 (SMCEH, 2016).

2.4.1.1 INVESTIGATION AT PROPERTY BOUNDARY WITH 401 CONCAR DRIVE

Nine soil borings were advanced at the western border of the Station Park Green Project and 401 Concar Drive (the Site) by Versar, Inc. (Versar) during March 2014 as part of a Phase II investigation. Laboratory analysis of groundwater samples from the borings revealed the presence of : TPHg up to 19,000 μ g/l; TPHd up to 120,000 μ g/l; and TPHmo up to 8,700 μ g/l in shallow (15-feet to 20-feet below ground surface) groundwater from boring B-12. Laboratory analysis of soil samples collected at 401 Concar Drive revealed: TPHg up to 0.63 mg/kg (B-16 at 2.5 feet below ground surface); TPHd up to 530 mg/kg (B-16 at 2.5 feet below ground surface); and, TPHmo up to 2,200 mg/kg (B-15 at 2.5 feet below ground surface).

Additional Phase II samples collected on November 4, 2014 revealed TPHg in soil samples up to 340 mg/kg; TPHd up to 4,100 mg/kg; and TPHmo up to 30,000 mg/kg as (B-30) at nine-feet below ground surface adjacent to the former asphalt plant.

2.4.2 470 Concar Drive

470 Concar Drive, located 150 feet southeast of the Site was historically used for commercial or industrial operations (BAGG, 2000). During 2000, 2008, 2013 and 2014, soil and groundwater samples were collected at 470 Concar Drive and the adjacent 1830 South Delaware Street in preparation for construction of a commercial office building with underground parking. Groundwater samples collected during July and August 2000 by Bay Area Geotechnical Group (BAGG) contained: TPHg up to 250 μ g/l; TPHd up to 910 μ g/l; and TPHmo up to 1,100 μ g/l, although the laboratory noted that the chromatographs were not consistent with typical fuel (BAGG, 2000).

Additional groundwater investigations conducted by Environ in April 2008 revealed: TPHg up to 590 μ g/l; TPHd up to 1,400 μ g/l; TPHmo up to 1,800 μ g/l; 2-butanone up to 230 μ g/l; tert butyl alcohol (TBA) up to 3.3 μ g/l; 1,2-DCA up to 950 μ g/l; methyl tertiary butyl ether (MTBE) up to 77 μ g/l; and naphthalene up to 1 μ g/l (Environ, 2008). Soil gas samples collected at 470 Concar Drive by Environ in 2008 revealed PCE up to 160 micrograms per cubic meter (μ g/m³).

2.4.3 Vail Burner & Oil Company - 1741 Leslie Street

Vail Burner & Oil Company operated a bulk oil storage and distribution facility at 1741 Leslie Street, located approximately 75-feet west of the Site, between 1940s and 1989 (GGT, 2006b). The products distributed included: diesel fuel, stove oil, thinners, solvents, kerosene and hydraulic oil (Traverse Group, 1989). An inspection in 1987 by San Mateo County identified that products had been discharged to soil.

Features at 1741 Leslie Street included: two 20,000-gallon aboveground storage tanks (AST) for kerosene and diesel fuel; one 10,000-gallon AST for motor oil; one 420-gallon gasoline underground storage tank (UST); and two 350-gallon heating oil USTs. In 1989, following removal of the ASTs, preliminary assessment investigations were conducted at 1741 Leslie Street. The investigations indicated releases of petroleum hydrocarbons to soil and groundwater. Between 1992 and 1998, the three USTs were removed and additional investigations conducted to delineate the extent of petroleum hydrocarbons in soil and groundwater.

Six monitoring well were installed in 1998 and 1999 and sampled periodically up until 2006. In 2003, additional monitoring wells were installed upgradient and downgradient of 1741 Leslie Street. Laboratory analysis of groundwater samples collected between 2003 and 2013 at downgradient monitoring well MW-8, located upgradient of the Site, revealed: TPHg up to 509 μ g/l; TPHd up to 2,100 μ g/l; benzene up to 0.8 μ g/l; xylenes up to 1.5 μ g/l; and MTBE up to 1.1 μ g/l (GeoTracker). This site received a no further action letter from the SMCEH on September 22, 2015 (SMCEH, 2015).

2.5 SURFACE WATER

The nearest surface water body is Borel Creek located approximately 0.25 miles southeast of the Site. A lined concrete drainage channel is located approximately 450-feet to the southwest of the Site on the west side of Pacific Boulevard (topographically higher). The closest surface water body located at a lower elevation than the Site is Seal Slough located approximately 4,800-feet to the east-northeast.

2.6 SITE USE

Current Site use is for the Caltrain Hayward Park Station parking. Approximately 95-percent of the Site is paved. The remainder of the Site is comprised of island planters in the parking lot. The reasonably anticipated future use of the Site is for parking and multi-story residential with podium construction and commercial uses on the ground floor. An overlay of the planned multi-story structure is presented on Figure 2-1. Select conceptual Site development plans are included in Appendix A.

3.0 SUMMARY OF INVESTIGATIONS

During May 2016, WEST advanced borings at 24 locations (W-1 to W24) for collection of soil, soil gas and groundwater samples (Figure 3-1). During February 2022, WEST advanced eight borings for soil gas sample collection (W-28 to W-30 and W-32 to W-37) and three borings for soil and groundwater sample collection (W-25, W-26 and W-27). Summaries of the soil, soil gas and groundwater analytical data are presented in Tables 3-1 to 3-5. The sample locations are depicted on Figure 3-1. Details of the investigation are presented below.

3.1 **PREVIOUS INVESTIGATIONS**

3.1.1 Soil, Soil Gas and Groundwater Sampling - 2016

WEST advanced soil borings at 24 locations (W1 to W24) at the Site between May 23, 2016 and May 26, 2016 for collection of soil and groundwater samples. Additional borings were advanced in six of the 24 locations for collection of soil gas samples (W-2, W-5, W-8, W-13, W-16 and W-20).

The borings for soil gas sampling were advanced to 4-feet below ground surface. The borings for soil and groundwater sampling were advanced to approximately two feet below first encountered groundwater measured at approximately 5.5-feet to 14.5-feet below ground surface. The downhole reusable sampling equipment was decontaminated prior to reuse at each sampling location. Once sampling was complete, the borings were backfilled to the surface with Portland Type II cement grout in accordance with SMCEH permit requirements. The borings were then completed to match the existing ground surface.

3.1.1.1 SOIL SAMPLE RESULTS

Seventy-six soil samples were analyzed for one or more of the following: TPHg, TPHd and TPHmo range organics by USEPA Method 8015B without silica gel cleanup; volatile organic

compounds (VOCs) by USEPA Method 5035/8260B; semi volatile organic compounds (SVOCs) by USEPA Method 3550/8270C; organochlorine pesticides by USEPA 8081; polychlorinated biphenyls (PCBs) by USEPA 8082; and Title 22 Metals by USEPA Method 6000/7000 series. The 5035A soil sample preparation was conducted by the laboratory.

Laboratory analysis revealed the presence of TPHg up to 181 mg/kg (W-10), TPHd up to 14,700 mg/kg (W-6) and TPHmo up to 11,600 mg/kg (W-6). VOCs were not detected in soil samples above their laboratory reporting limits presented in Table 3-1.

SVOCs were detected in samples from two (W-12, W-14) of the nine soil borings advanced at the Site, including: fluorene up to 8,420 micrograms per kilogram (μ g/kg; W-14); 2-methylnapthalene up to 16,100 μ g/kg (W-14); naphthalene up to 4,410 μ g/kg (W-14); phenanthrene up to 9,330 μ g/kg (W-14); and pyrene up to 9,860 μ g/kg (W-14; Table 3-2).

Pesticides were not detected in the 45 soil samples analyzed with the exceptions of: chlordane at 20.5 μ g/kg and 109 μ g/kg in two samples collected at one-foot below ground surface (W-14 and W-20) and dieldrin in one soil sample collected one-foot below ground surface at 7.57 μ g/kg (W-14). PCBs were reported at 40.9 μ g/kg (W-14) and 89.7 μ g/kg (W-13) in two of the of the twenty soil samples analyzed for this parameter (Table 3-2).

Laboratory analysis of 76 soil samples for metals revealed the presence of 11 metals, including: arsenic at less than the laboratory-reporting limit of 2.50 mg/kg to 12.7 mg/kg (W-20 at one-foot below ground surface); and lead at less than the laboratory reporting limit of 2.50 mg/kg to 2,640 mg/kg (W-17 at seven-feet below ground surface; Table 3-3).

A summary of the soil analytical results is included in Tables 3-1 to 3-3 and depicted on Figure 3-2.

3.1.1.2 GROUNDWATER ANALYTICAL RESULTS

Groundwater samples were collected from 11 of the 24 soil borings using 0.75-inch diameter, five-foot long Schedule 40 PVC slotted casing with a pre-pack #2/16 sand filter placed in the soil borings (at 5- to 15-feet below ground surface). The top of the pre-pack slotted casing was outfitted with 0.75-inch diameter Schedule 40 PVC blank well casing to the ground surface. The temporary screen was left for approximately two-hours to allow groundwater to enter the borings.

Groundwater samples were collected into laboratory supplied containers using a peristaltic pump with disposable polyethylene 0.25-inch diameter tubing. The groundwater samples were submitted to K Prime, Inc., of Santa Rosa, California, a CDPH ELAP certified laboratory, for analysis of: TPHg using USEPA 8015B; TPHd using USEPA 8015B without silica gel cleanup and VOCs using USEPA Method 5035/8260B.

Laboratory analysis of the 11 groundwater samples for chlorinated VOCs revealed the presence of PCE in one groundwater sample at 4.76 μ g/l collected from boring W-12. The gasoline additive 1,2-dichlorethane (1,2-DCA) was reported to be present in the sample from boring W-22 at 5,750 μ g/l, which was collected from the easternmost boundary with the Station Park Green site, where previous investigations have revealed the presence of gasoline in groundwater. The groundwater sample from boring W-17, located toward the middle of the Site did not reveal the presence of 1,2-DCA above its laboratory-reporting limit of 0.500 μ g/l.

The VOC chloromethane (CM) was detected in one groundwater sample from boring W-6, located toward the northern end of the Site at 7.81 μ g/l with chloroethane (CA) at 2.65 μ g/l. Other chlorinated VOCs were not detected above their respective laboratory-reporting limits.

The petroleum related VOCs detected in groundwater samples (presented in Table 3-4) included: benzene, toluene, ethyl benzene and xylenes in two samples (W-12 and W-14) up to 4.62 μ g/l, 1.6 μ g/l, 2.29 μ g/l and 3.63 μ g/l, respectively.

The groundwater sampling revealed the presence of petroleum hydrocarbons in the gasoline range (TPHg) in samples from three of the temporary groundwater wells. The highest detection of TPHg was found in the sampling from W-22 at 256 μ g/l, near the locations of the TPHg detections on the Station Park Green site (previously reported up to 190,000 μ g/l from boring B12).

Groundwater samples revealed the presence of TPHd up to 11,700 μ g/l in the sample collected from boring W-12 and at 8,460 μ g/l in the sample from W-14. Lower concentrations of TPHd were reported in samples from borings W-6 (2,950 μ g/l), W-9 (838 μ g/l), W-15 (1,260 μ g/l), W-17 (566 μ g/l), W-22 (811 μ g/l), W-23 (264 μ g/l) and W-24 (570 μ g/l). A summary of the groundwater analytical data is presented in Table 3-4.

3.1.1.3 SOIL GAS RESULTS

Six soil gas samples (W-2, W-5, W-8, W-13, W-16 and W-20) were collected from vapor points installed within the soil boring locations depicted on Figure 3-1 in accordance with the California Environmental Protection Agency's, Department of Toxic Substances Control (DTSC) *DTSC Advisory - Active Soil Gas Investigation* (DTSC, 2015).

Laboratory analysis of the soil gas samples revealed the presence of: tetrachloroethene in one sample (W-13) at 10.3 μ g/m³; benzene up to 9.81 μ g/m³ (W-16); toluene up to 46.5 μ g/m³ (W-8); 1,2,4-trimethylbenzene (1,2,4-TMB) up to 7.23 μ g/m³ (W-5); and 1,3-dichlorobenzene (1,3-DCB) up to 8.66 μ g/m³ (W-16). Other VOCs were not detected above their laboratory reporting limits. A summary of the soil gas analytical data is presented in Table 3-5.

3.1.2 Soil and Groundwater Investigations – 2019-2021

Between December 2019 through February 2021, ERM collected soil samples from 12 soil borings (HPK-SB-01 through HPK-SB-12) and nine groundwater monitoring well borings (MW-1 to MW-9). The soil sampling was conducted to delineate the findings from the 2016 soil

sampling. The soil samples were submitted for analysis of: TPHg, benzene, toluene, ethyl benzene, xylenes, methyl tertiary butyl ether (MTBE) and naphthalene by USEPA Method 8260B; TPHd and TPHmo by USEPA Method 8015B; and semi-volatile organic compounds by USEPA Method 8260C.

Groundwater sampling was attempted at each soil boring location, but due to limited presence or slow infiltration of groundwater, samples were collected from only five of the borings (HPK-HPK-SB-02, HPK-SB-04, HPK-SB-10, HPK-SB-11 and HPK-SB-12). Groundwater samples were submitted for analysis of: TPHg, benzene, toluene, ethyl benzene, xylenes and MTBE by USEPA Method 8260B; TPHd and TPHmo by USEPA Method 8015B.

Groundwater samples were collected from each of the nine groundwater-monitoring wells. The samples were analyzed for TPHg and VOCs by USEPA Method 8260B, and TPHd and TPHmo by USEPA Method 8015B (Table 3-4).

3.1.2.1 SOIL SAMPLE RESULTS

TPH-g was detected in 48 of 53 samples analyzed from the soil borings with concentrations ranging from 0.12 mg/kg in HPK-SB-02 at 13 feet below ground surface to 45 mg/kg in HPK-SB-12 at 5 feet below ground surface. TPH-d was detected in all 53 of the samples analyzed with concentrations ranging from 0.41 mg/kg in HPK-SB-06 at 11 feet below ground surface to 8,200 mg/kg in HPK-SB-07 at 5 feet below ground surface. TPH-mo was detected in 42 of 53 samples analyzed with concentrations ranging from 1.7 J mg/kg in HPK-SB-02 at 9 feet below ground surface to 11,000 mg/kg in HPK-SB-07 at 5 feet below ground surface.

VOC compounds that were detected above the laboratory reporting limit included acetone, methylene chloride, carbon disulfide, 2-butanone, chloroform, benzene, toluene, ethylbenzene, xylenes, and naphthalene. Naphthalene was detected in 12 of the 53 samples analyzed with concentrations ranging from 0.33 μ g/kg in sample HPK-SB-12 at 20 feet below ground surface to 1,500 μ g/kg in sample HPK-SB-03 at 5 feet below ground surface.

Soil samples from the groundwater monitoring well borings revealed the presence of VOCs including: naphthalene up to 150 μ g/kg (MW-5 at 3-feet below ground surface) and 1,2-dibromoethane (also referred to as ethylene dibromide) up to 42,000 μ g/kg (MW-9 at 9-feet below ground surface).

SVOC analysis was performed on 14 of the 53 soil samples collected and the results are presented in Table 3-2. In general, soil samples that contained concentrations of TPH were further analyzed for SVOCs. As detailed in Table 3-2, compounds detected above the reporting limit in one or more samples included 2methylnaphthalene, fluorine, phenanthrene, pyrene, and bis(2-ethylhexyl)phthalate.

2-Methylnaphthalene was detected in three of the 14 samples collected with concentrations ranging from 110 J to 4,300 J μ g/kg in samples HPK-SB-07 at 5 feet below ground surface and HPK-SB-05 at 0.5 feet below ground surface, respectively.

3.1.2.2 GROUNDWATER ANALYTICAL RESULTS

TPH-d and TPH-mo analysis was performed on four groundwater samples collected from three borings and TPH-g analysis was performed on five groundwater samples from four borings. In addition, nine groundwater-monitoring wells were installed and sampled in February 2021. As shown in Table 3-4, compounds detected above the reporting limit in one or more samples included TPH-g, TPH-d and TPHmo.

TPHg was reported to be present in groundwater samples analyzed by USEPA Method 8260B at up to 46,000 μ g/l (MW-9). However, the results do not appear related to TPHg, as there were no detections of petroleum related VOCs in the sample. In addition, as noted above, 1,2-dibromoethane was found in the sample from 9-feet below ground surface in the MW-9 boring. USEPA Method 8260B will result in VOCs that extract at similar times in the chromatographs as TPHg. However, given its presence in soil, the reported TPHg is most likely 1,2-dibromoethane

that eluted during the analysis. TPH-d was detected at concentrations ranging from 360 to 8,600 μ g/l.

3.2 RECENT INVESTIGATIONS

During February 2022, WEST conducted the sampling as presented in the *Data Gap Investigation Work Plan*² and *Data Gap Investigation Work Plan Addendum*.³ The sampling included the collection of: 12 soil samples to delineate the extent of 1,2-DBA in soil near monitoring well MW-9; eight soil gas samples to update the previous findings; and groundwater samples from the nine groundwater-monitoring wells and from one boring where soil gas could not be collected (W-33) due to the presence of shallow perched water.

3.2.1 Soil Sampling

WEST advanced three borings for the collection of 12 soil samples for laboratory analysis of VOCs near groundwater monitoring well MW-9 to delineate the extent of 1,2-DBA. The soil samples were collected into continuous core barrels outfitted with disposable acetate liner inserts. Soil samples were collected by cutting approximately six-inch long sections of the acetate liner inserts from the target depth intervals (0.5-, 3-, 6- and 10-feet below ground surface) and capped with Teflon[®] sheets and plastic end caps.

USEPA 5035 sample preparation was conducted at the laboratory within 24-hours of sample collection. The soil samples were labeled, placed in a cooler with ice and transported to a California State Water Resources Control Board (SWRCB) Environmental Laboratory Accreditation Program (ELAP) certified laboratory certified laboratory for chemical analysis of VOCs using USEPA Method 5035/8260B.

² WEST, Data Gap Investigation Work Plan, Hayward Park Caltrain Station, Plan, 401 Concar Drive, San Mateo, California, SMCEH Case No. 119191, October 4, 2021,

³ WEST, Data Gap Investigation Work Plan Addendum, Hayward Park Caltrain Station, 401 Concar Drive, San Mateo, California, SMCo Case #119191/RO2243, GeoTracker ID T10000008604, January 11, 2022.

3.2.1.1 SOIL SAMPLE RESULTS

The VOC 1,2-DBA was not detected above its laboratory-reporting limits ranging from 1.54 μ g/kg to 26.2 μ g/kg in the 12 soil samples advanced near monitoring well MW-9. The laboratory analysis did reveal the presence of 1,2-DCA up to 613 μ g/kg (W-25 at 10-feet); xylenes at 59.9 μ g/kg (W-27 at 4-feet); and naphthalene up to 224 μ g/kg (W-27 at 4-feet).

3.2.2 Soil Gas Sampling

WEST advanced nine borings for the collection of eight soil gas samples in the area beneath the proposed future building. The sample locations were placed primarily in areas beneath future occupied areas of the building (e.g., mail room, lobby, etc.). Due to the presence of perched water in boring W-33, soil gas could not be collected from this temporary vapor probe and a groundwater sample was collected from this boring.

3.2.2.1 VAPOR PROBE CONSTRUCTION

Single depth temporary depth vapor probes (W-28 to W-30; and W-32 to W-37) were installed in borings advanced between 2.5-feet and 4.0-feet below ground surface, as perched water was observed at approximately 4.90-feet below ground surface at the proposed vapor probe locations. The vapor probes were installed in accordance with the CalEPA/DTSC's 2015 *Advisory for Active Soil Gas Investigation ("DTSC Advisory"*). Soil borings were advanced using hydraulic direct-push drilling equipment operated by a California-licensed C-57 well drilling contractor. Continuous soil cores were logged and field-screened for total organic vapors using a photo-ionization detector (PID) outfitted with a 10.6 electronic volt (eV) lamp calibrated with 100 parts per million by volume (ppm_v) isobutylene gas. Boring logs are presented in Appendix C.

Once the boring target depth were reached, the rods were withdrawn and an approximately sixinch thick layer of #3 Monterey filter sand was placed at the base of the borehole. Following filter sand placement, an approximately six-inch long, 0.375-inch diameter screen outfitted with a

length of Teflon® tubing was lowered into the borehole. Additional filter sand was added from the base of the inlet screen to approximately six-inches above the top of the inlet screen. Approximately one-foot of dry bentonite granules was placed above the sand filter pack, followed by two feet of wet bentonite. A gas-tight fitting was used to cap the sampling tube. Following soil gas sampling, the tubing was pulled out of the ground and the annulus sealed with grout.

3.2.2.2 SOIL GAS SAMPLING

Soil gas samples were collected between February 24 and February 25, 2022 pursuant to the *DTSC Advisory* with quantitative leak testing using helium. To allow for equilibration, the vapor samples were collected at least 24-hours following installation. There was no significant rain event, defined as 0.5-inches or greater of rainfall during a 24-hour period, within five days prior to this sampling date.

3.2.2.2.1 Shut-In-Test

Prior to purging or sampling soil gas, a test was conducted to check for leaks in the aboveground fittings, i.e., "shut-in" test. The shut-in test was conducted by evacuating aboveground sampling apparatus, e.g., valves, lines and fittings downstream from the top of the probe, to at least approximately 100-inches of water (7-inches of mercury) using a peristaltic pump. The vacuum was then "shut-in" to the sampling apparatus by closing valves at both ends of the sampling manifold. The vacuum gauge connected to the line via "T"-fitting was observed for at least five minutes and if there was observable loss of vacuum, the fittings were adjusted, as needed, until the vacuum in the aboveground portion of the sampling equipment did not decrease.

3.2.2.3 <u>Purging</u>

Prior to soil gas sample collection, stagnant air from: the tubing; internal volume of the probe; void space of sand pack around the probe tip; void space of the dry bentonite; and sampling manifold, was purged into a one-liter Tedlar bag. The air was purged through a laboratory-

prepared sampling manifold using a peristaltic pump at a rate of approximately 125 ml/min, i.e., the same rate as during sampling. Pursuant to the *DTSC Advisory*, three purge volumes were removed. Copies of the field data forms are presented in Appendix D.

3.2.2.3.1 Quantitative Leak Testing

During purging and sampling, helium was applied at the well and connections of the sampling equipment including valves, gauges, tubing, manifold and sample container. A shroud was placed over the probe and sampling equipment, then the leak tracer gas, helium, was released into the shroud through the helium addition port. The helium concentration inside the shroud was maintained at approximately 20 percent, by monitoring with a hand-held helium detector and recording the data on field data forms (Appendix C). After a steady helium atmosphere was established inside the shroud, vapor was drawn from the vapor probe and field screened for helium using the handheld helium detector. If helium was detected leaving the sampling apparatus, the fittings were tightened and retested.

Helium measurements of the purged gas were used to evaluate real time leakage into the well and sampling train. Real time leak testing did not reveal helium within the well and sampling train in excess of five-percent of the helium concentration within the shroud, i.e., within acceptable range as indicated in the *DTSC Advisory*.

3.2.2.3.2 Sample Collection

Following purging, the effluent manifold valve was closed and the peristaltic pump turned off. A laboratory-prepared, batch certified one-liter Summa canister containing a vacuum of approximately 30-inches of mercury was then opened to collect the vapor. One duplicate soil sample (022522-4') was also collected concurrently with primary sample (W-28-4') using a sample splitter on a single manifold with 125-ml flow controller located after the flow controller.

During sample collection, the helium within the shroud, vacuum in the sampling probe and vacuum in the Summa canister were recorded every two minutes. Following sample collection,

the flow control valve was closed and the canister atmosphere measured with a pressure gauge and recorded on the field data forms (Appendix C).

Following sample collection, the soil vapor samples were transported to K Prime, Inc., of Santa Rosa, a SWRCB ELAP certified laboratory, following chain-of-custody protocols ASTM D4840. The soil gas samples were analyzed for VOCs using USEPA Method TO15 and carbon dioxide, oxygen and helium by ASTM D-1946. On arrival to the laboratory, Summa vacuums of the soil vapor samples ranged from 3-inches to 16-inches of mercury.

3.2.2.4 Soil Gas Sample Results

Soil gas sampling revealed petroleum related VOCs in the eight soil gas samples with: benzene up to 285 μ g/m³ (W-28); toluene up to 335 μ g/m³ (W-32); ethyl benzene up to 138 μ g/m³ (W-30); xylenes up to 214 μ g/m³ (W-32); and naphthalene up to 175 μ g/m³ (W-28). Laboratory analytical reports and chain-of-custody forms are presented in Appendix D.

Soil gas sampling revealed the detection of the chlorinated VOC TCE only in sample W-34 at 103 μ g/m³ along with its associated degradation products: cis-1,2-dichloroethene (DCE) at 44.8 μ g/m³; trans-1,2-DCE at 109 μ g/m³; and chloroethene (also referred to as vinyl chloride) at 97.3 μ g/m³. Other chlorinated VOCs detected in soil gas sample W-34 included: chloroethane at 188 μ g/m³; 1,1-DCE at 277 μ g/m³; and 1,2-DCA at 1,780 μ g/m³.

Soil gas samples collected near W-34 (e.g., W-35 and W-36) did not reveal the presence of TCE, cis-1,2-DCE, trans-1,2-DCE or chloroethene (vinyl chloride) above laboratory-reporting limits. Samples from W-28, and W-35 were reported to contain chloroethane at 6.65 μ g/m³ and 13.7 μ g/m³, respectively. Chloromethane was only reported to be present in samples from W-28 (up to 8.55 μ g/m³). Other chlorinated VOCs were not detected in soil gas samples collected during February 2022 above their respective laboratory reporting limits (Table 3-5).

Oxygen in soil gas ranged from 5.12 percent by volume (W-30) to 21.5 percent by volume (W-35). Carbon dioxide in soil gas ranged from less than a laboratory reporting limit of 0.100 percent by volume (W-30 and W-32) to 4.76 percent by volume (W-34).

3.2.3 Depth-Discrete Groundwater Sampling

Groundwater borings W-25, W-26 and W-27 were advanced near groundwater-monitoring well MW-9 to delineate the extent of 1,2-DBA in groundwater in the area. In addition, due to the presence of groundwater at 2.5-feet below ground surface, a groundwater sample was collected from soil gas boring W-33, rather than a soil gas sample.

The samples from these three borings did not reveal the presence of 1,2-DBA above the laboratory-reporting limits ranging from 0.500 μ g/l to 20 μ g/l. The samples from boring W-25 revealed the presence of 1,2-DCA at up to 2,740 μ g/l. The VOC 1,2-DCA was also reported to be detected in the sample from boring W-26 at 40.8 μ g/l with benzene at 2.12 μ g/l. Other petroleum related VOCs were also reported to be present in the sample from W-26, including ethyl benzene (1.34 μ g/l); 1,2,4-trimethylbenzene (1.66 μ g/l); isopropylbenzene (1.94 μ g/l) and n-propyl benzene (2.24 μ g/l). Laboratory analytical reports and chain-of-custody forms are provided in Appendix D.

The sample from boring W-33 did not reveal the presence of VOCs above the laboratory-reporting limits ranging from 0.500 μ g/l to 1.00 μ g/l.

3.2.4 Groundwater Monitoring Well Sampling

Groundwater samples were collected from monitoring wells MW-1 to MW-9 using low-flow purge and sample collection techniques (USEPA, 2017). The tubing intake was placed mid-screen, pursuant to USEPA 1997 guidance (SESDPROC-301-R4). New tubing was used for the collection of groundwater samples at each monitoring well. Where wells were purged to dryness,

a minimum of two hours was allowed for the well to return to equilibrium conditions and not sampled less than two hours after the well had recharged.

Groundwater samples were collected into laboratory supplied sample containers for: field measurements of temperature; pH; electrical conductivity; turbidity; and oxidation-reduction potential (ORP); and laboratory analysis. Dissolved oxygen (DO) was collected from a probe inserted to mid-screen of the groundwater monitoring well. In the event that the groundwater wells purged dry or had a drawdown of greater than 0.33-feet, groundwater was sampled in accordance with the USEPA 2017 and CalEPA 2008 guidance. Field data forms are provided in Appendix C.

Following sample collection, the groundwater samples were labeled, placed in a chilled cooler with ice and transported to KPrime Laboratories, Inc. of Santa Rosa, a California SWRCB ELAP certified laboratory, for analysis of TPHg, and TPHd, TPHmo using USEPA 8015M and VOCs using USEPA 8260B following the chain-of-custody procedures outlined in ASTM D 4840.

3.2.4.1 GROUNDWATER MONITORING WELL SAMPLE RESULTS

Laboratory analysis did not reveal the presence of VOCs in groundwater samples above their respective laboratory reporting limits with the exception of samples collected from groundwater monitoring well MW-9. Groundwater samples collected from MW-9 contained: benzene up to 0.540 μ g/l; 1,2-DCA up to 5.08 μ g/l and 1,2-DBA up to 1.74 μ g/l. TPHg, TPHd and TPHmo were detected in groundwater samples collected from MW-9 at 54.90 μ g/l, 3,410 μ g/l and 766 μ g/l, respectively (Table 3-4). Laboratory analytical reports and chain-of-custody forms are provided in Appendix D.

4.0 DATA EVALUATION

Investigations have revealed the presence of: TPHd, SVOCs, lead and pesticides in soil; VOCs in soil gas; and TPH and VOCs in groundwater. To assess the potential risks to human health and the environment associated with the presence of chemicals at the Site, a Conceptual Site Model (CSM) was developed and the data were compared with applicable screening levels

4.1 CONCEPTUAL SITE MODEL

Pursuant to State Water Resources Control Board (SWRCB) guidelines (Executive Order D-5-99 and Senate Bill 989), a CSM has been developed for the Site. The CSM represents the assemblage of the existing Site data and the general physical conditions that influence contaminant transport.

Petroleum hydrocarbons have been detected in soil and groundwater on the Site. There appears to be more than one source of the petroleum hydrocarbons. Relatively heavy petroleum hydrocarbons, i.e., in the diesel range (TPHd) and motor oil range (TPHmo,) have been found in soil up to 14,700 mg/kg and 11,600 mg/kg, respectively (W-6 at 2-feet below ground surface). The occurrence of the heavier hydrocarbons in soil appears related to historical operation of the asphalt plant on and near the Site. Generally, the higher concentrations of heavier hydrocarbons are limited in extent to the areas near boring W-6, W-12 and W-14, with lower concentrations distributed ubiquitously in soil at the Site. The presence of the higher concentrations of TPHd in soil is generally coincident with the higher detections of TPHd in groundwater, e.g., W-6 at 2,950 μ g/l; W-12 at 11,700 μ g/l and W-14 at 8,460 μ g/l. However, these groundwater samples were collected from borings and contained suspended solids, which biased concentrations higher than those found in subsequently installed monitoring wells.

The higher concentrations of petroleum hydrocarbons in the gasoline range (TPHg) are present primarily in samples collected on the Station Park Green project located to the east, e.g., 190,000 μ g/l in the sample from B12. Lower concentrations of TPHg were found in samples collected on

the Site with the highest detection being reported in the sample from boring W-22 (located near B12) at 256 μ g/l. The reported TPHg at 42,000 μ g/l in the sample from MW-9 is most likely due to the presence of 1,2-dibromoethane. 1,2-Dibromoethane has not been reported to be present in other samples above the laboratory-reporting limit.

4.1.1 Nature of Site Groundwater

The monitoring wells MW-1 to MW-9 (up to 12-feet below ground surface) appear to be screened in a perched groundwater zone that is neither a potential potable water source nor connected hydraulically to surface water. As explained further below, the perched groundwater beneath the Site does not appear to represent a potential potable water source. In addition, the perched groundwater appears neither hydraulically connected on-Site nor potentially migrating to surface water.

4.1.1.1 <u>GROUNDWATER IS NON-POTABLE WATER SOURCE</u>

A well yield test conducted on groundwater monitoring well MW-9 revealed a yield of approximately 90-gallons per day. In addition, conductivity measurements of water within the monitoring wells installed on the Site have been measured up to 58.3 milliSiemens per centimeter (mS/cm), e.g., MW-1 up to 15.4 mS/cm, MW-4 up to 5.49 mS/cm, MW-5 up to 12.7 mS/cm, MW-6 up to 38.3 mS/cm, MW-7 up to 58.3 mS/cm; and MW-9 up to 6.57 mS/cm. Pursuant to SWRCB No. 88-63, the water bearing geologic unit is not considered suitable, or potentially suitable, for municipal or domestic water supply, as: a single well is not capable of producing an average, sustained yield of 200-gallons per day; and the electrical conductivity has been measured above 5.0 mS/cm.

4.1.1.2 PERCHED GROUNDWATER WITH NO DISCHARGE TO SURFACE WATER

There are multiple lines-of-evidence demonstrating the lack of hydraulic interconnection of the perched water zone or connection to surface water. These lines-of-evidence include: (1) topographic setting; (2) variability of dissolved solids concentrations; (3) lower groundwater elevations in wells located upgradient of the Site; (4) inconsistent groundwater elevations measured in Site monitoring wells; (5) the lack of groundwater in the upper 17-feet at the downgradient property; and (6) findings at other nearby sites.

4.1.1.2.1 Site Topographic Setting

The Site is located within historical bay marshland (Figure 1-2), which has been subsequently filled with imported soil and debris. In the upper approximate three-feet, debris from historical site activities is present, including brick, concrete fragments, wood rail ties and marshland materials (ERM, 2020). Subsequent filling has moved the San Francisco Bay margin approximately 1.5-miles to the northeast. Prior to filling of the bay marshland, surface flow at the Site was likely tidally influenced. After placement of the fill, the previously present surface water was trapped as perched water within the undulating marshland bay mud.

4.1.1.2.2 Electrical Conductivity Variation

The presence of the relatively elevated conductivity in samples from Site monitoring wells is consistent with the trapped brackish surface water. While measurements have revealed electrical conductivity up to 58.3 mS/cm in some wells, water in wells MW-2, MW-3 and MW-8 was characterized with lower conductivity, i.e., less than 3 mS/cm. The lower conductivity found in water from wells MW-2, MW-3 and MW-8 is consistent with the lack of hydraulic connection of the water found at the Site, as these wells are co-located within 30-feet of wells with conductivity greater than 30 mS/cm (e.g., MW-6). The lower conductivity water within wells MW-2, MW-3 and MW-8 most likely represents perched infiltrated water.

If there was hydraulic interconnection of the groundwater in Site monitoring wells, the electrical conductivity of the water within the same area of the Site would have similar readings. However, the monitoring has revealed variations of at least one order of magnitude in electrical conductivity, which confirms that the perched groundwater is not moving even within localized areas of the Site, e.g., MW-6 with conductivity of 48.6 mS/cm and MW-7 with conductivity of 4.38 mS/cm. Therefore, due to the lack of hydraulic interconnection in the perched water zone, there is neither flow of groundwater between wells nor toward surface water bodies.

4.1.1.2.3 Groundwater Elevations

Groundwater monitoring conducted at the upgradient property at 1741 Leslie Street (SMCo #110049) revealed groundwater flow directions consistently to the east to northeast toward San Francisco Bay. However, in contrast, groundwater elevations within Site monitoring wells are highly variable. Monitoring wells on the eastern portion of the Site closer to San Francisco Bay have had higher groundwater elevations than those wells located to the west. For example, groundwater elevations in monitoring well MW-4 on the west side of the Site was measured at 4.47-feet MSL and in monitoring well MW-5 located to the east the elevation was measured at 6.73-feet MSL. Similarly, relatively co-located groundwater monitoring wells have elevations varying by more than 3.5-feet, e.g., MW-6 with a measured groundwater elevation of 2.72-feet MSL is located approximately 70-feet from MW-8 with a measured groundwater elevation of 6.3-feet MSL. To the extent that groundwater was hydraulically interconnected in the shallow perched-zone, more uniform and consistent groundwater elevations should be observed.

4.1.1.2.4 Lack of Groundwater at 1700 Delaware Street

Another line-of-evidence regarding the lack of advective groundwater movement in the perched groundwater at the Site is the lack of water encountered in excavations up to 17-feet deep at the neighboring 1700 South Delaware Street property (Geocon, 2016). While seepage of water was observed into a test pit at 1700 South Delaware Street, it was attributed to "relict storm drain located along west property boundary" at approximately eight-feet below ground surface that did not yield more than 10-gallons and was suspected to have been released from granular storm

drain bedding (Geocon, 2016). The absence of groundwater in the area between the Site and San Francisco Bay provides another line-of-evidence that the perched pockets of groundwater at the Site are not discharging to surface water.

4.1.1.2.5 Lack of Surface Water Discharge at 1801 South Delaware Street

Investigations at the former Exxon Service Station 74135, located approximately 750-feet northeast of the Site confirmed "advective groundwater flow from the site is not a completed pathway" (ERI, 2009). Further, using groundwater elevations and estimated hydraulic conductivities, it was calculated that "dissolved-phase hydrocarbons released to groundwater beneath the subject site would reach the 16th Street canal in approximately 5,645 years and the unnamed canal to the south in 8,065 years....Based on this evaluation, the aquatic habitat protection pathway is incomplete" (ERI, 2009). The GPP reviewed the findings of investigations and remediation at 1801 South Delaware Street as part of its closure evaluation and concluded that localized affected groundwater "will not likely migrate to surface water body that receives the storm drain effluent" (GPP, 2011). Given the similarities in lithology, these findings should apply to the Site groundwater.

4.2 SCREENING LEVEL ASSESSMENT

A screening level assessment was prepared to evaluate the adequacy of the investigations and identify chemicals of potential concern (COPC). The screening level assessment consisted of a comparative analysis between the maximum concentrations of detected chemicals and the potentially applicable California Regional Water Quality Control Board – San Francisco Bay Region (Regional Water Board) Environmental Screening Levels (ESLs). While exceeding an ESL does not necessarily indicate a threat to human health and/or environment, "it is unlikely the presence of a chemical in soil, soil gas or groundwater below the corresponding ESL will pose a significant threat to human health, water resources or the environment." Exceeding an ESL indicates that "additional evaluation is warranted." Therefore, if chemicals were not found above

their applicable Tier 1 ESLs, they were not retained for further evaluation, i.e., chemicals of concern (COCs) were selected based on their presence above their Tier 1 ESLs.

The subject chemicals present above Tier 1 ESLs include: TPHg, TPHd, TPHmo, 1,2-DCA, 1,2-DBA, naphthalene, anthracene, benzo(a)anthracene, chrysene, fluorene, 2-methyl naphthalene, chlordane, dieldrin, cobalt and lead and in soil; and TPHg and TPHd in groundwater. TCE, chloroethene, 1,2-DCA, benzene and naphthalene were found present in soil gas above Tier 1 ESLs.

Arsenic and vanadium were found in soil above their Tier 1 ESLs, but at concentrations consistent with ambient geological materials in the Bay Area. A summary of the chemicals with concentrations above Tier 1 ESLs is presented in Tables 3-1 to 3-5. Where chemicals were present above their Tier 1 ESLs, a Tier 2 analysis was performed to develop Site-specific screening levels.

4.2.1 Current and Future Potential Exposure Pathways

The Site is currently used as a parking lot for Caltrain riders and users of the Hayward Park Station. Following the planned Site development, the primary use of the Site will remain automobile and bicycle parking. The first floor of the proposed multi-family residential structure is mostly parking, with a leasing office, gym, lounge and trash room. The development does not include any common areas for gardening or other potential soil contact use. In addition, the only vegetation will be limited to planter boxes. Therefore, consistent with current use, there will be no complete exposure pathway to soil or habitat for potential sensitive ecological receptors. As discussed above, exposure to perched groundwater is limited to potential nuisance conditions as it is neither a potential potable water source or does groundwater pose a threat to surface water receptors. Soil vapor migration to indoor air is a potential exposure pathway.

Site-specific ESLs were selected by refining the CSM to identify relevant and potentially complete exposure pathways and receptors. Figure 4-1 summarizes the exposure pathway and receptor evaluation presented below.

4.2.2 Tier 2 ESL Soil Screening Levels

4.2.2.1 SOIL HUMAN EXPOSURE ESLS

While the future use does include high density residential, given the lack of potential for direct contact with soil and lack of residents on the groundwater floor, the Tier 2 analysis is based on commercial/industrial exposure scenario. The Tier 2 ESLs for commercial/industrial human exposure are predicated on the conservative assumption that on-Site occupants spend all or most of their day outdoors. The exposure is presumed to include: a full time property occupant who spends most of their day conducting manual labor activities outdoors, or performs regular landscape maintenance with soil contact in the upper two-feet (Regional Board, 2008). The scenario includes exposure for: eight hours per day, 250-days per year for 25-years. Therefore, given the current and planned future use, the assumptions in the commercial exposure ESLs are conservatively protective (ESLs – Table S-1).

4.2.2.2 Soil Terrestrial Habitat ESLs

Given the lack of vegetated area and the nature of the Site use for train parking and multi-family residential, there will be no habitat for complete exposure pathways to potentially sensitive ecological receptors. Therefore, the ESLs from Table S-2 are not applicable to the Site.

4.2.2.3 Soil Leaching to Groundwater

As noted above, the TDS of the groundwater in the areas is above SWRCB 88-63 for criteria for potable water of 3,000 mg/l. Therefore, leaching to groundwater protection soil ESLs should be based on non-drinking water resource protection (ESL Table S-3). However, given the lack of

movement in the perched groundwater at the Site, the groundwater protection criteria for discharge to surface water do not apply to this Site.

4.2.2.4 SOIL GROSS CONTAMINATION LEVELS

The gross contamination ESL was developed to assist in identifying the potential presence of non-aqueous phase liquid (NAPL) or free product. The concentrations for most chemicals were developed using the Massachusetts Department of Environmental Protection (MADEP) methodology. However, the MADEP methodology underestimates the gross contamination level. Therefore, the ESLs were developed using the results from the Brost and Duvall studies presented in the American Petroleum Institute's Soil & Groundwater Research Bulletin No. 9 (Brost and Duvall, 2000).

The Regional Water Board conservatively selected the Tier 1 gross contamination soil concentrations for coarse gravel, which were reported at 1,000 mg/kg and 2,286 mg/kg (rounded to 2,300 mg/kg in the ESL tables). However, as soil at the Site does not contain coarse gravel, the gross contamination levels for coarse-grained sand were used in the Tier 2 analysis, which is more consistent with the lithology observed at the Site.

4.2.2.5 SOIL ODOR NUISANCE LEVELS

Per the ESL Manual, the odor nuisance level is a function of the vapor pressure of the chemical and the odor threshold. Table 11-2 of the ESL User Manual presents two criteria for each scenario, based on vapor pressure and odor index. For a heavily aged diesel, where the remaining fraction of TPH is mainly in the heavy motor oil range with very low vapor pressure (e.g., laboratory notes "heavier hydrocarbons contributing to the diesel range quantitation"), there is much less odor.

The odor from degraded TPH has been reported to decrease by approximately 10 times relative to fresh TPH (Zemo and Foote, 2003). Therefore, to the extent that the TPH results are due to

heavier hydrocarbons (aged), use of the motor oil criteria, i.e., non-odorous, appears appropriate, except where odors were actually noted during drilling. However, as a conservative approach the default odor/nuisance levels for commercial exposure were selected as the screening levels for the upper two-feet of soil.

4.2.2.6 <u>Summary of Tier 2 Soil Screening Levels</u>

Based on the preceding analysis, soil screening levels for the upper two-feet were selected based on the lowest of: (1) direct exposure (commercial exposure); (2) gross contamination (S-4 as modified for coarse sand for TPH); and (3) odor nuisance levels (S-5). The Tier 2 soil screening levels for soil deeper than two-feet were selected based on the gross contamination protection (modified for coarse sand for TPH). If no chemical concentrations were present above the lowest value of the identified ESLs, then a further evaluation was deemed unnecessary, e.g., chlordane. The selected soil Tier 2 screening levels are summarized in Tables 3-1 to 3-3.

4.2.2.6.1 TPH Soil Screening Levels

Using coarse-grained sand to evaluate potential NAPL, the gross contamination levels for the petroleum hydrocarbons are 3,000 mg/kg for TPHg, TPHd at 8,000 mg/kg and TPHmo at 17,000 mg/kg (Duvall and Brost, 2000). The occurrence of separate phase was noted in soil samples at the Site where TPHd concentrations were greater than 8,000 mg/kg, which provides another line of evidence for the use of the coarse sand gross contamination concentrations. For soil in the upper two feet, the odor nuisance ESLs for commercial exposure were used for TPHg and TPHd at 500 mg/kg and 1,000 mg/kg, respectively.

4.2.2.6.2 VOC Soil Screening Levels

Three VOCs are present in soil above their Tier 1 ESLs: naphthalene (up to 1,500 μ g/kg); 1,2-dichlorotheane (up to 990 μ g/kg) and 1,2-dibromoethane (up to 14,000 μ g/kg). However, these chemicals were not present above the human health or odor nuisance level in the upper two feet or above the gross contamination level for soil deeper than two-feet.

4.2.2.6.3 PAH Screening Levels

The PAHs fluoranthene (up to 2,910 μ g/kg); fluorene (up to 8,420 μ g/kg); and 2methylnapthalene (up to 16,100 μ g/kg) are present above their Tier 1 ESLs. Based on the evaluations discussed above and summarized in Table 3-2, the screening levels for anthracene and chrysene are 4,100 μ g/kg and 2,200 μ g/kg, respectively.

4.2.2.6.4 Metal Screening Levels

Based on the anticipated future use and evaluations presented above and summarized in Table 3-3, no metals are present at levels above potential screening levels.

4.2.3 Tier 2 Soil Gas Analysis

As approximately 80-percent of the ground floor of the proposed building will be open-air ventilated garage, Site-specific screening levels were developed for future garage visitors. The Site-specific screening levels were calculated using adjustments to the exposure factors for the commercial ESLs. Rather than the default 8-hour exposure for commercial exposure, the 95th percentile exposure time of 1-hour per day was used in lieu of the default 8-hour per day for garage visitors (USEPA, 2011). Adjusting for the 1-hour exposure, the garage visitor indoor air screening levels were calculated at eight-times higher threshold than the Tier 1 ESL for commercial exposure.

Using the garage indoor air screening level and the very conservative soil gas to indoor attenuation factor (AF) of 0.03, Tier 2 soil gas concentrations were calculated for garage visitors. However, the 0.03 AF does not incorporate the higher ventilation rate present within the garage. To address potential carbon monoxide accumulation in the garage, the California Mechanical Code (Section 402) requires at least 0.75 cubic feet per minute per square foot (cfm/sf) or for the Site garage, approximately 4.5 air changes per hour (ACH), which is approximately nine times higher than the default 0.5 ACH for residential and commercial structures. Therefore, the Tier 2 garage visitor screening level is very conservative. For the occupied enclosed portions of the first

floor of the building, Tier 1 commercial screening levels were used in the evaluation of Site conditions.

4.2.3.1 LOW-THREAT CLOSURE POLICY CRITERIA – PETROLEUM HYDROCARBONS

The State Water Resources Control Board (SWRCB) has developed its Low-Threat Closure Policy (LTCP; SWRCB, 2012) to establish low-threat petroleum site closure criteria. In the absence of site-specific conditions that demonstrably increase the risk associated with residual petroleum constituents, cases that meet the general and media-specific criteria identified in the SWRCB policy "do not pose a threat to human health, safety or the environment and are appropriate for UST case closure pursuant to Health and Safety Code Section 25296.10.

The LTCP threshold criteria include media specific criteria for petroleum related VOCs in soil gas, including benzene and naphthalene. The LTCP criteria for soil gas consider whether a bioattenuation zone exists. The SWRCB has concluded, "potential human exposures to vapors are mitigated by bioattenuation processes as vapors migrate toward the ground surface, i.e., an area of soil with conditions that support biodegradation of petroleum hydrocarbon vapors. For benzene the LTCP soil gas criteria include 280 μ g/m³ for no bioattenuation zone and 280,000 for sites with a bioattenuation zone. The naphthalene LTCP criteria are: 310 μ g/m³ and 310,000 μ g/m³ for sites without and with bioattenuations zones, respectively.

4.2.4 Tier 2 Groundwater Screening Levels

The Tier 1 ESLs are based on the use of groundwater as a potable water source. Total dissolved solids (TDS) expressed as specific conductance in groundwater at the Site exceeds the criteria established in State Water Resources Control Board Resolution 88-63 for designation as a potable water source. Therefore, where chemicals are present above Tier 1 ESLs, Tier 2 screening levels were developed based on non-drinking water resource criteria.

As there is no potential discharge of groundwater from the Site to surface water, the screening levels for VOCs in groundwater were developed based on protection from vapor intrusion for commercial workers in the future building, i.e., benzene at 1.8 μ g/l, PCE at 2.8 μ g/l; and 1,2-DCA at 9.8 μ g/l.

The only groundwater monitoring wells samples with benzene, PCE, and 1,2-DCA were collected from well MW-9, which is located beneath the future at-grade lobby area (Figure 3-1). Given the anticipated limited exposure time within the lobby and the anticipated measures to address soil contamination in the area, measures to address vapor intrusion should be considered as a contingency.

Given the limited extent of TPH in groundwater and the proposed remedial goals for soil to address potential gross contamination, no screening levels are proposed for TPHg or TPHd in groundwater. There were no detections of TPHg above its gross contamination level of 50,000 μ g/l and only one sample of TPHd in a sample from monitoring wells above its gross contamination level of 2,500 μ g/l (MW-9).

4.2.5 Background Concentrations

Measurable concentrations of metals, including arsenic, may represent background concentrations associated with natural and anthropogenic sources. The CalEPA advises that naturally occurring arsenic in soil is frequently higher than the risk-based concentration set at a one-in-one-million cancer risk (the residential ESL for arsenic in soil is 0.067 mg/kg). The CalEPA has usually required cleanup to background when chemicals are present that are due to anthropogenic sources. Background arsenic in the San Francisco Bay Region has been estimated at up to 11 mg/kg (Duverge, 2011).

4.3 COMPARATIVE ANALYSIS

The concentrations of VOCs have been compared to the identified screening criteria to assist in identifying areas needing additional evaluation or the need for immediate response actions. The soil, soil gas and groundwater screening Tier 1 ESLs are presented in Tables 3-1 to 3-5.

4.3.1 Soil Conditions

4.3.1.1 <u>Petroleum Hydrocarbons</u>

The concentration of TPHg in soil samples was reported up to 181 mg/kg (W-10 collected at 3feet below ground surface); above its Tier 1 ESL of 100 mg/kg for protection of groundwater and its gross contamination ESL of 100 mg/kg (Table 3-1), but below applicable Tier 2 screening levels for direct exposure at 2,000 mg/kg, gross contamination at 1,000 mg/kg and odor/nuisance at 500 mg/kg.

TPHd in soil was reported: above the Tier 1 ESL of 260 mg/kg in 18 (298 mg/kg to 14,700 mg/kg) of the 58 soil samples analyzed; and above the gross contamination ESL of 1,000 mg/kg in 13 of the 58 soil samples (1,800 mg/kg to 14,700 mg/kg), with the highest concentrations reported in soil samples collected from borings W-6, W-12 and W-14 (Table 3-1).

4.3.1.2 <u>VOCs</u>

VOCs in soil were not detected above their respective Tier 1 ESLs, with the exception of 1,2dibromoethane, which was reported to be present at 14,000 μ g/kg, above its Tier 1 ESL of 7 μ g/kg, but below applicable Tier 2 screening levels, e.g., for direct exposure in the upper two-feet and gross contamination level. Naphthalene was also found up to 1,500 μ g/kg in soil above its Tier 1 ESL of 42 μ g/kg, but below applicable Tier 2 screening levels (Table 3-1).

4.3.1.3 <u>PAHs</u>

PAHs were detected in soil samples from two (W-12, W-14) of the nine soil borings advanced at the Site (W-12 to W-20), including: fluorene up to 8,420 μ g/kg; (W-14) above its Tier 1 ESL of 6,000 μ g/kg; 2-methylnapthalene up to 16,100 μ g/kg (W-14) above its Tier 1 ESL of 880 μ g/kg; naphthalene up to 4,410 μ g/kg (W-14) above its Tier 1 ESL of 42 μ g/kg; and phenanthrene up to 9,330 μ g/kg (W-14). Pyrene in soil was detected up to 9,860 μ g/kg (W-14), which is below its Tier 1 ESL of 45,000 μ g/kg (Table 3-2). No PAHs were detected above their applicable Tier 2 screening levels (Table 3-2).

4.3.1.4 PESTICIDES

The pesticide chlordane was reported at less than the laboratory reporting limit of 12.5 μ g/kg to 125 μ g/kg, with the exception of three samples collected at one-foot below ground surface (14.8 μ g/kg at W-11, 20.5 μ g/kg at W-14 and W-20 at 109 μ g/kg); above its Tier 1 ESL of 8.5 μ g/kg, but below applicable Tier 2 screening levels (Table 3-2). One soil sample collected at one-foot below ground surface and analyzed for dieldrin was reported at above its laboratory-reporting limit of 5 μ g/kg to 50 μ g/kg (W-14 at 7.57 μ g/kg), which is above its Tier 1 ESL of 0.46 μ g/kg, but below its applicable Tier 2 screening level of 160 μ g/kg. PCBs were detected in soil up to 89.7 μ g/kg (W-13), which is below its Tier 1 ESL of 230 μ g/kg (Table 3-2).

4.3.1.5 <u>METALS</u>

Arsenic was reported in soil samples at less than the laboratory-reporting limit of 2.50 mg/kg to 12.7 mg/kg, which is consistent with background for the San Francisco Bay area. Nine of these 46 soil samples were reported to contain lead above the Tier 1 ESL of 32 mg/kg for protection of ecological receptors, with the highest lead in soil reported in sample W-17 collected at seven-feet below ground surface (2,640 mg/kg). Only four of the 85-soil samples were reported to contain lead above the residential exposure Tier 1 ESL of 80 mg/kg and two soil samples were reported to contain lead above its commercial exposure ESL of 320 mg/kg (W-17). However, lead was not

detected above its commercial exposure ESL in the upper two-feet, the zone of potential exposure.

Cobalt was reported above the Tier 1 ESL of 23 mg/kg in two of 16 soil samples analyzed for this parameter (W-4 at 32.3 mg/kg and W-18 at 30.4 mg/kg, both collected at 10-feet below ground surface). However, cobalt was not detected above its Tier 2 screening level for protection of commercial workers. All of the 16 soil samples analyzed for vanadium were above its Tier 1 ESL of 18 mg/kg for protection of terrestrial habitat but below its residential ESL of 390 mg/kg.

4.3.2 Soil Gas Conditions

PCE in six soil gas samples collected in 2016 from 3-feet to 3.5-feet below ground surface was reported at less than the laboratory reporting limit of 6.78 μ g/m³, with the exception of 10.3 μ g/m³ in sample W-13. PCE in soil gas at 10.3 μ g/m³ is below its Tier 1 ESL for protection of indoor air of 15 μ g/m³. The 2022 soil gas sampling did not reveal the presence of PCE above its laboratory-reporting limit of 6.78 μ g/m³.

TCE, while not detected in 2016, was detected in one sample collected in 2022 from boring location W-34 at 103 μ g/m³, approximately equal to its Tier 1 commercial vapor intrusion ESL. Co-present in the sample from boring W-34 was the PCE and TCE degradation product cis-1,2-DCE at 44.8 μ g/m³, less than its commercial ESL of 1,200 μ g/m³. The degradation product chloroethene was also found in the soil gas sample from W-34 (but not from other locations) at 97.3 μ g/m³, which is above its commercial ESL of 5.2 μ g/m³. The chlorinated VOC 1,2-DCA was also found in the sample from W-34 at 1,780 μ g/m³, above its ESLs for protection of indoor air under a commercial scenario of 16 μ g/m³.

4.3.2.1 <u>Petroleum-related VOCs</u>

The petroleum related VOCs, benzene and naphthalene, were not found in 2016 above their respective commercial ESLs. However, benzene was found in 2022 at approximately equal to its

LTCP soil gas criteria for sites without a bioattenuation zone of 280 μ g/m³ in the samples from W-28 (285 μ g/m³) beneath the future bicycle storage room. Nearby soil gas sample W-29 did not reveal the presence of benzene above its LTCP criteria in the area beneath the lobby. Neither naphthalene nor ethyl benzene were reported to be present in soil gas above their respective LTCP soil gas criteria for sites without a bioattenuation zone (Table 3-5).

4.3.3 Groundwater Conditions

A summary of the groundwater conditions relative to their respective screening levels is presented below.

4.3.3.1 <u>Petroleum Hydrocarbons</u>

TPHg was detected in groundwater above its laboratory-reporting limit of 50 μ g/l in four of eleven depth discrete samples collected in 2016 (W-14 at 185 μ g/l, W-12 at 198 μ g/l and W-22 at 256 μ g/l); above its Tier 1 ESL of 100 μ g/l; but below the Tier 2 screening level of 400 μ g/l for protection on non-drinking water resources. Samples collected in 2020 did not reveal TPHg above its Tier 1 screening level of 100 μ g/l. During the 2022 groundwater-monitoring event, TPHg was only detected in the groundwater samples from MW-9 at up to 54.90 μ g/l, less than the Tier 1 ESL of 100 μ g/l.

Samples collected in 2016 for TPHd in groundwater ranged from 325 μ g/l to 11,700 μ g/l (W-12); above its Tier 1 ESL of 100 μ g/l with some samples exceeding the Tier 2 gross contamination screening level of 2,500 μ g/l. Samples from groundwater monitoring wells in 2022 revealed TPHg up to 3,410 μ g/l, above its gross contamination level, but below its odor nuisance level of 5,000 μ g/l. Samples from the other eight monitoring wells (MW-1 to MW-8) collected in 2022 revealed TPHd ranging from 434 μ g/l to 3,320 μ g/l, generally below or near its gross contamination ESL.

4.3.3.2 <u>VOCs</u>

4.3.3.2.1 Chlorinated VOCs

The chlorinated VOC, 1,2-DCA, was detected above its laboratory-reporting limit of 0.500 μ g/l in two of 11 samples collected in 2016, i.e., W-23 at 2.89 μ g/l, below its Tier 1 ESL of 50 μ g/l and 5,750 μ g/l at W-22, above its Tier 1 ESL of 50 μ g/l, but below the Tier 2 screening level for protection of non-drinking water. Subsequent sampling in 2021⁴ and 2022 has revealed the presence of 1,2-DCA only in samples from groundwater monitoring well MW-9 ranging from 54 μ g/l (May 2021) to 5.21 μ g/l (February 2022), with the most recent sample concentration being lower than the vapor intrusion groundwater ESL of 9.8 μ g/l.

The chlorinated VOC, 1,2-DBA was reported to be present in the May 2021 sample only from groundwater monitoring well MW-9 at up to 360 μ g/l, above its groundwater vapor intrusion ESL of 0.76 μ g/l. Sampling of MW-9 in February 2022 revealed 1,2-DBA at up to 1.74 μ g/l, which is also above its vapor intrusion ESL of 0.76 μ g/l.

Chloroethene was only detected in samples from groundwater monitoring well MW-9 in May 2021, but was not reported to be present above its laboratory-reporting limit of 0.5 μ g/l during the 2022 sampling event.

4.3.3.2.2 Petroleum Related VOCs

The petroleum related VOCs, benzene and naphthalene, were detected in samples from 2016 above their laboratory-reporting limits of 0.500 μ g/l and 1.00 μ g/l, respectively, in two samples (W-12 and W-14), above their Tier 1 ESLs, but below applicable Tier 2 screening levels for protection on non-drinking water resources. Benzene in groundwater was detected at 2.69 μ g/l (W-12) and 4.62 μ g/l (W-14); above its Tier 1 ESL of 0.42 μ g/l, but below its Tier 2 screening level for protection of non-drinking water resources of 46 μ g/l. Naphthalene was detected at 9.87

 μ g/l (W-12) and 23.5 μ g/l (W-14); above its Tier 1 ESL of 0.17 μ g/l, but below its Tier 2 screening level for protection of non-drinking water resources of 24.9 μ g/l.

Samples from groundwater monitoring wells collected in 2021 and 2022 have revealed only petroleum related VOC of benzene in samples from MW-9. While benzene was reported at up to 1.3 μ g/l in May 2021, the February 2022 sample revealed benzene at up to 0.540 μ g/l, which is less than its groundwater vapor intrusion ESL of 1.0 μ g/l. Other petroleum related VOCs were not detected above their respective ESLs (Table 3-4).

4.3.4 Data Gap Analysis

The data evaluation adequately explains the distribution of chemicals at the Site. The data gap investigation data revealed that while 1,2-DBA had been found in soil samples collected from the MW-9 boring, delineation samples did not reveal its presence above the laboratory-reporting limits.

The soil gas sampling also confirmed that there was seasonal/temporal variation of concentrations, and that petroleum related VOCs appear to be distributed across the Site and chlorinated VOCs were limited to the area near monitoring well MW-9. The follow up groundwater sampling also confirmed that while present, concentrations of petroleum hydrocarbons and VOCs were generally lower than previously reported. Based on these findings, no data gaps have been identified.

4.3.5 Soil Remedial Goals

Based on the preceding analysis, soil remedial goals for the upper two-feet were selected based on the lowest of: 1) direct exposure (commercial exposure); 2) gross contamination (S-4 as modified for coarse sand for TPH); and 3) odor nuisance levels (S-5). The soil remedial goals for

⁴ While samples were collected from wells in February 2021, the results of 1,2-DCA and 1,2-DBA appeared biased high based on subsequent sampling, and hence are not considered reliable.

soil deeper than two-feet were selected based on the gross contamination protection (modified for coarse sand for TPH). If no chemical concentrations were present above the lowest value of the identified ESLs, then a remedial goal was deemed not necessary, e.g., chlordane. The selected soil remedial goals are summarized in Tables 3-1 to 3-3.

4.3.5.1 TPH SOIL REMEDIAL GOALS

Using coarse-grained soil to evaluate potential NAPL, the gross contamination levels for the petroleum hydrocarbons are 3,000 mg/kg for TPHg, TPHd at 8,000 mg/kg and TPHmo at 17,000 mg/kg (Duvall and Brost, 2000). The occurrence of separate phase was noted in soil samples at the Site where concentrations were greater than 8,000 mg/kg, which provides another line of evidence for the use of the coarse sand gross contamination concentrations. For soil in the upper two feet, the odor nuisance ESLs for commercial exposure were used for TPHg and TPHd at 500 mg/kg and 1,000 mg/kg, respectively.

4.3.5.2 VOC SOIL REMEDIAL GOALS

Three VOCs are present in soil above their Tier 1 ESLs, naphthalene (up to 1,500 μ g/kg); 1,2dichlorothane (up to 990 μ g/kg) and 1,2-dibromoethane (up to 14,000 μ g/kg). However, these chemicals were not present above the human health or odor nuisance level in the upper two feet or above the gross contamination level for soil deeper than two-feet.

4.3.5.3 PAH REMEDIAL GOALS

The PAHs fluoranthene (up to 2,910 μ g/kg); fluorene (up to 8,420 μ g/kg); 2-methylnapthalene (up to 16,100 μ g/kg) are present above their Tier 1 ESLs. Based on the evaluations discussed above and summarized in Table 3-2, the remedial goals for anthracene and chrysene are 4,100 μ g/kg and 2,200 μ g/kg, respectively.

4.3.5.4 METAL REMEDIAL GOALS

Based on the anticipated future use and evaluations presented above and summarized in Table 3-3, no metals are present at levels requiring remediation, i.e., no remedial goals are proposed.

4.3.6 Soil Gas Remedial Goals

The data evaluation indicates that chlorinated VOCs (TCE, CE and 1,2-DCA) are present above commercial ESLs in the area near MW-9, which is below future occupied areas (e.g., lobby and leasing office). Therefore, the commercial ESLs have been selected as the applicable remedial goals for these chemicals, i.e., $103 \ \mu g/m^3$, $5.2 \ \mu g/m^3$ and $16 \ \mu g/m^3$, for TCE, CE and 1,2-DCA respectively.

Benzene was detected approximately equal to its LTCP criteria for sites with no bioattenuation zone. The soil gas sampling did, however, reveal the presence of oxygen in the area of boring W-28 at 19.4-percent, indicating that a bioattenuation zone was present. Therefore, remedial measures for petroleum-related VOCs in soil gas do not appear warranted.

4.3.7 Groundwater Remedial Goals

The Tier 1 ESLs are based on the use of groundwater as a potable water source. Based on the TDS in groundwater at the Site above 3,000 mg/l, the groundwater in the area exceeds the criteria established in SWRCB Resolution 88-63 for designation as a potable water source. Therefore, where chemicals are present above Tier 1 ESLs, remedial goals were developed based on non-drinking water resource criteria.

As there is no potential discharge of groundwater from the Site to surface water, the remedial goals for VOCs in groundwater were developed based on protection from vapor intrusion for commercial workers in the future building, i.e., benzene at 1.8 μ g/l, PCE at 2.8 μ g/l; and 1,2-

dichloroethane at 9.8 μ g/l. However, the VOC remedial goals are conservative long-term targets, as soil vapor sampling has not revealed the presence of these chemicals above commercial ESLs.

The two samples with detections of benzene, PCE, 1,2-dichloroethane and naphthalene were found from borings W-12 and W-14, which are located beneath the future at-grade parking within the proposed new building (Figure 3-1). Given the anticipated limited exposure time within the garage, the necessity for carbon monoxide control and the lack of detections of vapors at concentrations above commercial screening levels, measures to address the threat from vapor intrusion from groundwater do not appear warranted.

Given the limited extent of TPH in groundwater and the proposed remedial goals for soil to address potential gross contamination, no remedial goals are proposed for TPHg or TPHd in groundwater. There were no detections of TPHg above its gross contamination level of 50,000 μ g/l and only one sample of TPHd in a sample from three monitoring wells above its gross contamination level of 2,500 μ g/l (MW-5, MW-6 and MW-9).

5.0 REMEDIAL ACTION IMPLEMENTATION

Based on the Site characterization, response actions were developed to address soil and soil gas conditions, under the future Site use of a multi-story podium style mixed-use structure, with commercial uses at-grade and residential above. In addition, portions of the Site, including at-grade portions of the building will be used for parking.

The remedial actions include soil excavation to address: petroleum hydrocarbons and PAHs in soil above cleanup goals. To address VOCs in soil gas above remedial goals, soil will be excavated and, as appropriate, reused on-Site in areas outside of the building footprint and the excavated areas will be backfilled with Portland cement treated soil. If the post-backfill soil gas samples reveal the presence of VOCs above applicable screening levels, then a vapor mitigation system will be installed to control subsurface migration of vapors.

5.1 REMEDIAL ACTION PLAN OBJECTIVES

The objective of the *Remedial Action Plan* is to propose actions to address the contaminants identified as posing an unreasonable risk to public health and safety or the environment. Based on the characteristics of the chemicals of concern, the nature of the Site and regulatory requirements, soil and soil gas response actions were developed to address soil and soil gas above cleanup goals presented in Tables 3-1 to 3-5.

5.2 PRE-REMEDIAL ACTION IMPLEMENTATION ACTIVITIES

The activities to be conducted prior to implementation of the recommended response actions include the following: soliciting public participation; obtaining necessary permits; preparation of a health and safety plan; and utility clearance. Details of the other elements to be addressed prior to soil excavation are presented below.

5.2.1 Public Participation

Opportunities will be provided to obtain public input prior to the implementation of the remedial actions. Public participation activities will be conducted based on the level of community interest in the project. Community acceptance will be addressed based on this input.

5.2.1.1 PUBLIC COMMENT

Public participation will provide opportunities for the public and other agencies to participate in decisions regarding the remedial actions. The public comment period will be for a minimum of 30-days. The methods for public participation will include:

- Preparing and distributing a Fact Sheet to interested parties describing the proposed remedial measures; and
- Providing a public meeting, if deemed necessary.

5.2.1.1.1 Fact Sheet and Public Notice

As part of the public communication, a fact sheet will be prepared and distributed that summarizes the Site history and proposed remedial actions. The Fact Sheet will announce the availability of the *Remedial Action Plan* for public review; provide information to the public of the proposed scope of the remedy; and identify where documents will be available for review. In support of the public review process, project documents will be made available to the public.

5.2.2 Permitting

Prior to implementation of the response plan, permits will be obtained for the work. Permits will be obtained and/or notifications will be provided prior to response actions, including: grading permit from the City of San Mateo; and the Bay Area Air Quality Management District (BAAQMD) Regulation 8, Rule 40 notification prior to excavating soil with petroleum

hydrocarbons. In addition, adjacent residents and businesses will be notified of the scheduled work dates approximately one week prior to commencing on-Site activities.

5.2.3 Health and Safety

To address potential exposures to chemicals of potential concern, health and safety procedures have been developed for workers and community during Site development.

5.2.3.1 WORKER HEALTH AND SAFETY

Due to the potential exposure to residual chemicals in soil and soil gas during response action activities, a *Health and Safety Plan (HASP)* will be prepared and followed by on-Site personnel. The *HASP* addresses the requirements of the Occupational Health and Safety Administration (OSHA) 29 CFR 1910.120 guidelines and Title 8 CCR Section 5192. The *HASP* will be read by Site workers and visitors to apprise them of the Site conditions and provide instructions for implementing proper safety training and procedures during development activities.

As phases of work proceed, the *HASP* will be updated to reflect: Site organizational structure; names of key personnel; personnel training requirements; medical surveillance program; summary of risk assessment; a task-specific hazard analysis; Site control program; personal protective equipment use; air monitoring plan; decontamination procedures; emergency response plan; spill containment; Site sanitation facilities; and standard operating procedures. The contractor conducting the development activities will also use their Injury and Illness Prevention Program (IIPP) in conjunction with the *HASP*.

5.2.4 Utility Clearance

Pursuant to California Assembly Bill AB 73, USA will be contacted to locate and clear work areas for underground utilities at the Site. The work areas will also be cleared for underground utilities using a private underground utility locating contractor.

5.2.5 Storm Water Controls

Storm water pollution control procedures will be implemented to comply with the requirements of the SWRCB Water Quality Order 2009-0009-DWQ and the *National Pollutant Discharge Elimination System (NPDES) General Permit for Storm Water Discharges Associated with Construction and Land Disturbance Activities* ("the General Permit"). Water pollution control measures to be implemented include, where necessary: 1) berming the Site to contain runoff; 2) installation of silt fence to remove sediments prior to discharge; and 3) installation of hay bales at appropriate locations to contain storm water runoff and to enhance settling of solids. Details of the contractor's storm water management requirements, which include Best Management Practices for control of storm water run-on and runoff at the Site, will be presented in the *Storm Water Pollution Prevention Plan* for the Site.

5.3 REMEDIAL ACTION IMPLEMENTATION

To address chemicals in soil and soil gas above cleanup goals, the following response actions will be implemented.

5.3.1 Site Control

Excavation areas should be controlled by the contractor to prevent unauthorized entry. Fencing and other barricades should be maintained by the contractor. In addition, the construction entrance should be closed and locked during non-working hours to prevent entrance by unauthorized personnel.

5.3.2 Monitoring Well Destruction

To facilitate remedial excavations, groundwater-monitoring wells within the planned excavation areas will be destroyed in accordance with San Mateo County requirements.

5.3.3 Soil Excavation

Prior to soil removal and pursuant to the requirements of AB 939 requirements, the asphalt concrete pavement will be removed for recycling. The excavation will be advanced vertically and horizontally within the excavation boundaries. The limits of the excavation will be determined based on the post-excavation soil sampling demonstrating that cleanup goals have been achieved. Approximately 4,000 cubic yards of soil containing chemicals in soil above their cleanup goals will be removed between approximately two-feet and 12-feet below ground surface from the identified areas (Figure 3-2).

5.3.4 Soil Handling

Excavated soil will either be direct loaded for direct transport to the disposal facility or stockpiled for characterization and disposition.

5.3.4.1 SOIL LOADING

The soil transport vehicles will be equipped with plastic sheeting and will be loaded using either a front-end loader or excavator. Trucks transporting soil will not be loaded above the side or rear of the truck bed. The truckload will be covered with a tarp to prevent particulate emissions to the atmosphere. The tarps will be secured per applicable Department of Transportation requirements. Prior to departure, the contractor will check and, as needed, remove loose soil via dry brushing.

5.3.4.2 SOIL STOCKPILE MANAGEMENT

Stockpiled soil will be placed on paved surfaces or a minimum of 40-mil plastic. Individual stockpiles will not exceed 250 cubic yards and will be less than 20-feet high. The stockpiles will be in place for no longer than 90 days. The stockpile will be covered with either 6-mil reinforced plastic or 10-mil unreinforced plastic sheeting to control dust. The stockpile covers will be anchored with either clean soil or other suitable material. Stockpiled areas will also be bermed to

prevent storm water erosion and/or runoff. Uncovered stockpiles will be watered pursuant to dust control requirements to minimize airborne particulate emissions. The berms surrounding the stockpiled area will be inspected and maintained when the stockpiles are uncovered and water is applied for dust control.

Any portions of the stockpile not being actively worked on during a given day will remain covered with plastic sheeting. Stockpiles will be inspected daily for proper cover.

5.3.4.2.1 Stockpile Sample Collection Methodology

If soil is stockpiled prior to being removed from the Site, discrete samples will be collected from the stockpiled soil for characterization. The frequency of sampling will be conducted in general following the DTSC *Information Advisory – Clean Imported Fill Material* (DTSC, 2001) and in accordance with the waste management facility for soil requiring off-Site disposal. In addition, sampling of stockpiled soil for VOC analysis will follow BAAQMD Rule 8 Regulation 40 requirements, ASTM D 4547, *Standard Guide for Sampling Waste and Solids for Volatile Organics* (ASTM, 2015), USEPA soil sampling guidance (USEPA, 1991) and USEPA waste sampling technical guidance (USEPA, 2002).

The soil samples will be collected from at least three to six-inches below the surface of the stockpile by hand pushing brass-lined tubes into each portion of the stockpile. The ends of the brass-lined tubes will be covered with Teflon[©] sheets and plastic end caps, labeled, sealed in a plastic bag and placed in a chilled ice chest. Following appropriate sample collection protocols, the soil samples will be transported to a SWRCB ELAP certified laboratory for chemical analysis, following ASTM D 4840 chain-of-custody protocols. The stockpiled samples will be analyzed for the constituents required by the waste management facility for soil requiring off-Site disposal. For VOC analysis, Encore (or equivalent device) aliquots, per USEPA Method 5035, will be collected in the field from the subsurface soil samples and submitted to the analytical laboratory.

5.3.4.3 SOIL DISPOSAL

The final destination of excavated soil will be selected by the owner based on the waste analytical results and acceptance criteria provided by the waste management facilities. The soil samples results will be evaluated using the procedures outlined in *Test Methods for Evaluating Solid Waste, Physical/Chemical Methods* (SW-846; USEPA, 2007). USEPA's SW-846 identifies that the statistically representative concentration will be used when characterizing solid wastes with potentially variable concentrations, i.e., the 90 percent upper confidence level (UCL) concentration. The number of samples and suite of analytes will be determined based on the nature and source of the contamination and waste facility requirements.

It is anticipated that the excavated soil will be characterized as non-hazardous and will be managed at appropriate disposal facility, e.g., Class II or III landfill, or transported for beneficial reuse in accordance with applicable requirements. Potential disposal/reuse facilities for non-hazardous excavated soil include: Altamont Landfill in Livermore; Newby Island in Newark; Dumbarton Quarry in Fremont, Baylands Soil Processing in Brisbane, Ox Mountain Landfill in Half Moon Bay, Potrero Hill Landfill in Suisun City. Potential hazardous waste facilities include: Kettleman Hills Landfill; Buttonwillow Landfill, and US Ecology Nevada Landfill, Beatty, Nevada.

5.3.5 **Post-Excavation Soil Sampling**

Post-excavation discrete samples will be collected and analyzed following the removal of the soil to characterize the remaining conditions. The analytical results of the post-excavation discrete soil samples will be compared to the cleanup goals (Table 3-1). The discrete soil samples will be collected from an imaginary grid with cell spacing of approximately 20-feet from the center of the cell, i.e., a minimum of one sample will be collected for each 400 square feet of soil excavation (Figure 3-2). Sidewall samples will be collected at approximately 20-foot spacing along sidewalls deeper than three-feet. Additional samples may be collected as requested by the oversight regulatory agency.

5.3.5.1 SOIL SAMPLE COLLECTION METHODOLOGY

For excavations shallower than four-feet deep, soil samples will be collected using tools such as trowels or scoops. The soil samples will be collected into laboratory-supplied pre-cleaned glass jars outfitted with Teflon-lined lids, labeled and placed in a cooler with ice.

For excavation greater than four-feet deep, soil samples will be collected using hydraulic excavating equipment. The soil samples will be collected by hand pushing a pre-cleaned six-inch long, 1.5-inch diameter stainless steel sample liners into soil contained within the excavating equipment bucket. The ends of the sample liners will then be covered with Teflon[©] sheets and plastic end caps. The sample liner will then labeled, placed in a chilled cooler with ice.

The soil samples will be transported to a SWRCB ELAP certified laboratory, following the chain-of-custody procedures outlined in ASTM D 4840.

5.3.6 Engineered Fill

Following the completion of the soil removal and post-excavation sampling activities, the excavations will be backfilled with imported and on-Site material, compacted and graded to restore the ground surface. Import material for backfilling will be characterized prior to placement on the Site. On-Site soil used for backfilling will be also be characterized to confirm that it does not contain chemicals above remedial goals. Discrete samples will be collected from the import source for characterization. The frequency of sampling and suite of analytes for imported soil will be collected in general following the DTSC *Information Advisory – Clean Imported Fill Material* (DTSC, 2001). The analytical results of the import soil samples will be compared to applicable screening criteria to evaluate whether the material is suitable for import. Excavations deeper than 3-feet deep will be backfilled with controlled density fill or cement treated soil to within three-feet of finished grade.

5.3.7 Post Backfill Soil Gas Sampling

Non-excavated subsurface VOC sources (e.g., soil gas) can potentially re-contaminate the backfilled material through vapor transport where excavations are adjacent to residual volatile chemical contamination. Therefore, soil gas samples will be collected following placement of backfill. The soil gas samples will be collected from vapor monitoring wells installed within the backfill material to a depth of 5-feet below ground surface or as adjusted based on the depth of perched groundwater.

5.3.8 Contingent Vapor Intrusion Mitigation System

If the post-backfill soil gas samples reveal the presence of VOCs above applicable remedial goals, then a vapor intrusion mitigation system (VIMS) will be installed to control subsurface migration of vapors. The vapor mitigation system will be comprised of a dispersion vent layer, vapor barrier, foundation seals, and utility trench vapor dams, installed between the backfill and the floor slab of the at-grade occupied ground floor spaces. The VIMS will be adaptable for active ventilation, if monitoring results warrant such modification. The contingent VIMS locations are presented on Figure 5-1.

5.3.8.1 DISPERSION VENT LAYER

A dispersion layer vent system will be installed to provide a higher permeability zone, i.e., preferential pathway, for the gas to migrate and vent to atmosphere. The dispersion layer will be comprised of a minimum of 4-inches of coarse aggregate meeting ASTM 57, with 85 percent of the surface consisting of fractured faces. The coarse aggregate shall have an open gradation with 100 percent passing the 1.5-inch sieve; 95 to 100 percent passing the 1.0-inch sieve; 26 to 60 percent passing the 0.5-inch sieve; 0 to 10 percent passing the No. 4 sieve; and 0 to 5 percent passing the No. 8 sieve.

5.3.8.2 VAPOR BARRIER

The overlying building foundation in conjunction with membranes and other barriers will be used to retard upward migration of vapors. The vapor barrier layers will include a permeable vented zone overlaid with: a vapor resistant membrane (e.g., EVOH); 40 mil spray applied asphalt/rubber barrier; and a 100 mil non-woven geotextile.

5.3.8.2.1 Vapor Barrier Installation

Proper installation of the vapor barrier is essential for optimal performance. Small imperfections in the barriers (e.g., due to holes, tears, or incomplete seals at the footings or pipe penetrations) can provide a migration route for soil gas when buildings are under negative relative pressure (compared to soil gas pressure).

The vapor barrier must be tested following construction of the vapor barrier and before the placement of concrete over the barrier. The testing will be performed by blowing smoke or some tracer gas under the membrane. If smoke is detected outside of the barrier, additional measures will be undertaken. Methods will be developed to pinpoint imperfections and repair them after installation, e.g., smoke and/or tracer gas testing. Once smoke tested and receiving approval/passing test, the concrete slab/pads may be poured completing the foundation.

The construction will follow quality control procedures, including training of construction workers, to minimize barrier damage during installation and subsequent construction. The installation requirements will include the use of: certified installers; certified inspectors; and smoke testing.

A construction quality assurance plan (CQA Plan) will be used during the installation and testing of the vapor barrier. The CQA Plan will be prepared if it is determined that the contingent vapor mitigation is required. The CQA Plan will follow the applicable ASTM standards for underslab vapor retarders; including those for material specifications with specific criteria that the material

has to meet; both applicable to new materials as well as materials that are conditioned or exposed to simulate service conditions; and the placement and installation of the vapor retarder.

5.3.8.2.2 Foundation Seals

The design also requires sealing of foundation penetrations. Penetrations of the foundation include plumbing, electrical conduits and expansion joints installed during construction. Improper sealing may also increase operational costs due to excessive indoor air flow relative to soil gas capture.

5.3.8.3 UTILITY TRENCH VAPOR DAMS

Vapor dams will be installed in utility trenches that extend beneath the building foundation from areas outside the perimeter of building. The vapor dams will consist of a cement, bentonite and water slurry or controlled low-strength material placed within the utility trench extending a minimum of five feet beginning immediately adjacent to the exterior perimeter of the building foundation and placed a minimum of six inches above the bottom of the perimeter footing to the base of the trench.

5.3.9 Post-Construction Monitoring

To document the effectiveness of the vapor barrier, post-construction sampling will be conducted. The sampling will be conducted one time prior to building occupancy at approximately four weeks after completion; with subsequent testing during the potentially "worst-case" months of January/February and June/July (DTSC, 2011). Details of the post-construction indoor air monitoring will be presented in the *Remedial Action Plan Implementation Report (RAIR)*.

5.4 REMEDIAL ACTION IMPLEMENTATION REPORT

Following implementation of the remedial action described above, a RAIR will be prepared. The RAIR will provide a description of the work completed and a summary of the confirmation testing results that verify that established project-specific remediation goals were met. The report will include a summary of the soil remedial actions activities including: quantity of soil removed; extent of excavation; post-excavation and backfill sampling analytical results; field observations; waste disposal documentation; and pre-occupancy indoor air sampling. Appendices to the report will include copies of the: field data forms; laboratory data certificates; and chain-of-custody forms. The reports will be prepared under the supervision of a California Professional Engineer and California Professional Geologist.

6.0 **REFERENCES**

- ASTM, Standard Guide for Sample Chain-of-Custody Procedures D 4840-99 (ASTM D 4840).
- ASTM, Standard Guide for Sampling Waste and Solids for Volatile Organic Compounds ASTM D4547 (ASTM, 2015)
- Bay Area Geotechnical Group (BAGG), *Phase I and II Environmental Assessment, Former* Denny's Site, 470 Concar Drive, San Mateo, California for San Mateo Investors, LLC, November 7, 2000 (BAGG, 2000).
- Brost, E., and DuVaull, G., Non-Aqueous Phase Liquid (NAPL) Mobility Limits in Soil, American Petroleum Institute, Soil & Groundwater Research Bulletin, June 2000 (Brost and DuVaull, 2000).
- California Department of Water Resources (DWR) San Francisco Bay Hydrologic Region, Santa Clara Valley Groundwater Basin, San Mateo Subbasin, California's Groundwater Bulletin 118, February 27, 2004 (DWR 2004).
- California Department of Toxic Substance Control (DTSC), DTSC Information Advisory Clean Imported Fill Material Fact Sheet, October 2001 (DTSC, 2001).
- California Department of Toxic Substance Control (DTSC), *Final Guidance for the Evaluation* and Mitigation of Subsurface Vapor Intrusion to Indoor Air (Vapor Intrusion Guidance), October 2011 (DTSC, 2011).
- California Department of Toxic Substance Control (DTSC), Advisory Active Soil Gas Investigations, July 2015 (DTSC, 2015).
- California Regional Water Quality Control Board San Francisco Bay Region, San Francisco Bay (Region 2) Water Quality Control Plan (Basin Plan; Water Board, 2017).
- California Regional Water Quality Control Board San Francisco Bay Region Environmental Screening Levels (ESLs), January 2019.
- California State Water Resources Control Board, Low-Threat Closure Policy, April 2012 (SWRCB, 2012).
- Cambria Environmental Technology, Inc, *Groundwater Monitoring Report First Quarter 2006,* Shell-branded Service Station, 1790 South Delaware Street, San Mateo, California, SMSCo Site No. 110022, February 22, 2006 (Cambria, 2006).
- Certified Environmental Consulting, Inc., Work Plan for Soil and Groundwater Remediation For SEMCO at 1741 Leslie Street, San Mateo, California, December 15, 1992 (CEC, 1992).

- Chemical & Metallurgical Engineering (CME), Volume 15, p. 547, November 1, 1916, (CME, 1916).
- Duverge, D.J., *Establishing Background Arsenic in Soil of the Urbanized San Francisco Bay Region* documents/2011_Arsenic_Background_Duverge.pdf Accessed April 9, 2014 (Duverge, 2011).
- Environ, Environmental Sampling at 470 Concar Drive and 1830 South Delaware Street, May 20 2008 (Environ, 2008).
- Environ, Environmental Sampling at 470 Concar Drive and 1830 South Delaware Street, December 12, 2014 (Environ, 2014).
- ERI, Site Conceptual Model, Former Exxon Service Station 74135, 1801 South Delaware Street, San Mateo, California, July 27, 2009 (ERI, 2009).
- ERM, Subsurface Investigation Report, Hayward Park, San Mateo, California, April 14, 2021 (ERM, 2021a).
- ERM, Supplemental Groundwater Sampling Event at the Caltrain Hayward Park Station Site, June 18, 2021 (ERM, 2021b).
- Environmental Resources Management, Work Plan for Subsurface Assessment of the Hayward Park Caltrain Station January 4, 2018, (ERM 2018)
- Geocon Consultants, Inc., *Report of Findings, Station Park Green, 1700 South Delaware Street, San Mateo, California*, February 2, 2016 (Geocon, 2016).
- Golden Gate Tank Removal, Inc., Groundwater Monitoring Report, Former Vail Burner & Oil Company, 1741 Leslie Street, San Mateo, California, SMCo Site 110049, February 25, 2005 (GGTR, 2005).
- National Park Service, Photographs, Written Historical and Description Data, Field Records, Alviso Salt Works, 1992 (NPS, 1992).
- San Mateo County Environmental Health Division (SMCEH), *Case Closure, Remedial Action Oversight Approval for the Former Vail Burner & Oil Co. Facility Located at 1741 Leslie, San Mateo, California*, September 22, 2015 (SMCEH, 2015).
- San Mateo County Environmental Health Division (SMCEH), *Case Closure, Remedial Action Oversight, Station Park green, 1700 South Delware Street, San Mateo, California,* September 30, 2016 (SMCEH, 2016).
- San Mateo County Environmental Health Division (SMCEH), *Hayward Park Caltrain Station*, 401 Concar Drive, San Mateo, California, December 7, 2021 (SMCEH, 2021).

- United States Environmental Protection Agency (USEPA), *National Primary Drinking Water Regulations – EPA Technical Factsheet, Ethylene Dibromide*, 1998 (USEPA, 1998).
- USEPA, *RCRA Waste Sampling Draft Technical Guidance, EPA530-D-02-00*, August 2002 (USEPA, 2002).
- USEPA, Groundwater Sampling Operating Procedure, SESDPROC-301-R4, https://www.epa.gov/sites/default/files/2017-07/documents/groundwater _sampling301_af.r4.pdf, April 24, 2017 (USEPA, 2017).
- USEPA, Exposure Factors Handbook, 2011, found at https://www.epa.gov/expobox/aboutexposure-factors-handbook (USEPA, 2011).
- United States Fish and Wildlife Service (USFWS), Identification and Evaluation of the South San Francisco Bay Solar Salt Industry Landscape, March 9, 2009 (USFWS, 2009).
- Versar, Inc., *Phase II Environmental Site Assessment, Station Park Green*, April 24, 2014 (Versar, 2014).
- Versar, Inc., Supplemental Phase II Environmental Site Assessment, Station Park Green, January 27, 2015 (Versar, 2015).
- WEST, Data Gap Investigation Work Hayward Park Caltrain Station, Plan, 401 Concar Drive, San Mateo, California, SMCEH Case No. 119191, October 4, 2021 (WEST, 2021).
- WEST, Data Gap Investigation Work Plan Addendum, Hayward Park Caltrain Station, 401 Concar Drive, San Mateo, California, SMCo Case #119191/RO2243, GeoTracker ID T10000008604, January 11, 2022 (WEST, 2022).
- Zemo, D., and Foote, G., The Technical Case for Eliminating the Use of the TPH Analysis in Assessing and Regulating Dissolved Petroleum Hydrocarbons in Ground Water, Ground Water Monitoring & Remediation, Summer, 2003 (Zemo, 2003).

7.0 DISTRIBUTION LIST

Ken Busch, P.E. (email only) HPS – San Mateo, LLC 901 Mariners Island Boulevard, Suite 700 San Mateo, California 94404 Kbusch@srgnc.com

Rory Campbell, Esq. (email only) Hanson Bridgett, LLP 425 Market Street, 26th Floor San Francisco, CA 94105 rcampbell@hansonbridget.com

Jacob Madden, P.G. (email only) Hazardous Material Specialist III San Mateo County Groundwater Protection Program 2000 Alameda de Las Pulgas, Suite 100 San Mateo, CA 94403

Tom Graf, P.E. (email only) Grafcon P.O. Box 1105 Tiburon, CA 94920 tom@grafcon.us

Geotracker (electronic only)

TABLES

TABLE 2-1 SUMMARY OF GROUNDWATER ELEVATION DATA Caltrain Hayward Park Station San Mateo, California

Sample ID	Screen Interval	Top of Casing Elevation	Date	Depth to Water	Groundwater Elevation	Groundwater Flow Direction	Groundwater Gradient
	(ft bgs)	(ft above MSL)		(ft below TOC)	(ft above MSL)	(degrees)	(ft/ft)
	2 += 10	11.22	2/26/21	7.67	3.65	59.16	0.05229
MW-1	3 to 10	11.32	2/23/22	5.93	5.39	62.12	0.0769
MW-2	3 to 10	11.15	2/26/21	6.55	4.60	59.16	0.05229
IVI VV -2	5 10 10	11.15	2/23/22	5.10	6.05	62.12	0.0769
			2/26/21	6.72	4.04	59.16	0.05229
MW-3	3 to 10	10.76	5/13/21	6.81	3.95	65.83	0.04109
			2/23/22	5.68	5.08	62.12	0.0769
MW-4	3 to 12	12.23	2/26/21	7.76	4.47	59.16	0.05229
IVI VV -4	5 10 12	12.25	2/23/22	5.01	7.22	62.12	0.0769
MW-5	3 to 10	10.53	2/26/21	3.80	6.73	59.16	0.05229
IVI VV -3	5 10 10	10.55	2/23/22	2.92	7.61	62.12	0.0769
			2/16/21	7.44	2.72	59.16	0.05229
MW-6	3 to 12	10.16	5/13/21	6.68	3.48	65.83	0.04109
			2/23/22	5.80	4.36	62.12	0.0769
MW-7	3 to 12	9.69	2/26/21	7.79	1.90	59.16	0.05229
1 v1 vv - /	5 10 12	9.09	2/23/22	6.13	3.56	62.12	0.0769
MW-8	3 to 12	10.38	2/26/21	4.08	6.30	59.16	0.05229
IVI VV -0	5 10 12	10.38	2/23/22	4.92	5.46	62.12	0.0769
			2/26/21	6.70	3.74	59.16	0.05229
MW-9	3 to 10	10.44	5/13/21	6.83	3.61	65.83	0.04109
			2/23/22	5.21	5.23	62.12	0.0769

Notes:

ft: Feet bgs: below ground surface MSL: Mean Sea Level TOC: Top of Casing

Petroleum Hydrocarbons																			
FieldPoint ID	Date	Depth (feet)	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethyl benzene	Xylenes	1,2 DCA	1,2-DBA	Isopropyl benzene	N-propyl benzene	1,2,4-TMB	1,3,5-TMB	sec-buytl benzene	4-isopropyl toluene	N-buytl benzene	Naphthalene
				(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
W-2	5/23/16	1	<1.00	61.7	237	<1.76	<1.76		<1.76										
		7	<1.00	<10.0	<10.0	<3.28	<3.28	<3.28	<3.28										
W-3	5/23/16	3	<1.00 <1.00	<10.0 298	16.6 671	<1.65 <1.66	<1.65	<1.65 <1.66	<1.65 <1.66										
W-3	5/25/10	<u> </u>	<1.00	<10.0	<10.0	<1.66	<1.66 <1.85	<1.66	<1.66										
		10	<1.00	39.5	53.5	<1.83	<1.83	<1.83	<1.83										
W-4	5/26/16	3	<1.00	320	487	<1.72	<1.72	<1.72	<1.72										
	0,20,10	7	<1.00	<10.0	<10.0	<1.63	<1.63	<1.63	<1.63										
	- / /	1	<1.00	97.8	353	<1.53	<1.53	<1.53	<1.53										
W-5	5/23/16	3	<1.00	18.9	13.4	<2.90	<2.90	<2.90	<2.90										
		1	<1.00	29.9	123	<1.89	<1.89	<1.89	<1.89			·							
W-6	5/23/16	2	<1.00	14,700	11,600	<25.0	<25.0	<25.0	<25.0										
W-0	5/25/10	3	<1.00	361	665	<3.08	<3.08	<3.08	<3.08										
		7	<1.00	400	376	<1.61	<1.61	<1.61	<1.61			·							
		1	<1.00	<10.0	<10.0	<1.71	<1.71	<1.71	<1.71			·							
W-7	5/26/16	3	<1.00	51.3	105	<1.78	<1.78	<1.78	<1.78										
		10	<1.00	<10.0	<10.0	<1.74	<1.74	<1.74	<1.74			·							
		1	<1.00	<10.0	17.1	<1.60	<1.60	<1.60	<1.60										
W-8	5/23/16	3	<1.00	63.8	229	<3.37	<3.37	<3.37	<3.37										
		7	<1.00	28.2	35.6	<1.59	<1.59	<1.59	<1.59										
W-9	5/24/16	1	<1.00	132	335	<1.74	<1.74		<1.74										
		3																	
W-10	5/26/16	1 3	<1.00 181	439 875	365 27.6	<1.66 <24.4	<1.66 <24.4		<1.66 <24.4										
W-10	5/20/10		<1.00	<10.0	<10.0	<1.79	<1.79		<1.79										
		, 1	<1.00	94.5	126	<1.79	<1.54		<1.79										
W-11	5/26/16	3	<1.00	360	120	<1.66	<1.66		<1.66										
		1	<1.00	146	329	<1.64	<1.64		<1.64										
		3	1.2	2,740	1,690	<1.67	<1.67	3.65	<1.67										
W-12	5/25/16	7	25.5	3,450	1,860	<43	<43		<43										
		10	25.2	1,800	867	<44.1	<44.1	119	81.3			·							
W 12	5/24/16	1	<1.00	364	1,140	<1.71	<1.71	<1.71	<1.71			·							
W-13	5/24/16	3	<1.00	10	48.1	<3.35	<3.35	<3.35	<3.35										
		1	<1.00	136	398	<1.54	<1.54	<1.54	<1.54			·							
W-14	5/25/16	3	3.78	4,200	2,850	<1.60	<1.60	<1.60	4.25										
TT-17	5/25/16	7	10.5	8,490	5,430	<55.6	<55.6	143	407										
I	1	10	122	12,400	6,200	<50	<50	90.8	273										

			Petroleu	m Hydroc	arbons			Mateo, C				VOCs							
FieldPoint ID	Date	Depth (feet)						cene				benzene	Jenzene	œ		senzene	/l toluene	enzene	ne
		(feet)	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethyl benzene	Xylenes	1,2 DCA	1,2-DBA	Isopropyl benzene	N-propyl benzene	1,2,4-TMB	1,3,5-TMB	sec-buytl benzene	4-isopropyl toluene	N-buytl benzene	Naphthalene
			(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
W-15	5/24/16	1	<1.00	242	513	<1.70	<1.70	<1.70	<1.70										
		3	<1.00 <1.00	90.3 <10.0	169 <10.0	<3.17	<3.17 <1.79	<3.17 <1.79	<3.17 <1.79										
W-16	5/23/16	1 7	<1.00	<10.0	<10.0	<1.79	<1.79	<1.79	<1.79										
		1	<1.00	20.1	81.5	<1.56	<1.59	<1.59	<1.59										
W-17	5/25/16	3	<1.00	302	1,020	<1.83	<1.83	<1.83	<1.83										
		1	<1.00	67	254	<1.74	<1.74	<1.74	<1.74										
W-18	5/26/16	4	<1.00	719	259	<1.42	<1.42	<1.42	<1.42										
		7	2.56	315	128	<1.70	<1.70	<1.70	<1.70										
		1	<1.00	41.9	60	<1.53	<1.53	<1.53	<1.53										
W-19	5/26/16	3	<1.00	23.4	<10.0	<1.53	<1.53	<1.53	<1.53										
		10	<1.00	<10.0	<10.0	<1.80	<1.80	<1.80	<1.80										
W-20	5/24/16	1	<1.00	14.9	65.3	<3.15	<3.15	<3.15	<3.15										
		73	<1.00 <1.00	<10.0 19.1	<10.0	<1.85 <2.94	<1.85 <2.94	<1.85 <2.94	<1.85 <2.94	<2.94	<2.94	<2.94	<2.94	<2.94	<2.94	<2.94	<2.94	<2.94	<5.88
W-21	5/25/16	3 7	<1.00	<10.0		<1.70	<1.70	<1.70	<2.94	<1.70		<1.70	<1.70	<1.70					<3.39
		3	<1.00	41.4		<1.67	<1.67	<1.70	<1.70	<1.67	<1.67	<1.70	<1.67	<1.67	<1.70		<1.67	<1.70	<3.33
W-22	5/25/16	7	<1.00	<10.0		<1.69	<1.69	<1.69	<1.69	2.26		<1.69	<1.69	<1.69	<1.69		<1.68	<1.68	<3.38
		3	<1.00	133		<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70	<1.70		<1.70	<3.40
W-23	5/25/16	7	<1.00	<10.0		<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<1.80	<3.59
W-24	5/24/16	3	<1.00	214		<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<1.62	<3.23
vv-24	5/24/10	7	<1.00	<10.0		<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<1.68	<3.35
	12/30/19	1	0.20	20	150	<4.5	0.23	<4.5	<4.5										<4.5
HPK-SB-01	12/30/19	3	0.25	33	66	<4.2	<4.2	<4.2	<4.2										<4.2
	1/3/20	7	0.14	3.9		<3.6	<3.6												<3.6
	1/3/20	10.5	<1.0	1.9		<3.3	<3.3	<3.3	<3.3										
	12/19/19	0.5	0.19	120		<6.0	<6.0												
HPK-SB-02	12/19/19	4.5 9	0.16	4.4	11	<3.8	<3.8	<3.8	<3.8										<3.8
	1/3/20 1/3/20	13	<1.0 0.12	0.87	1.7 <5.0	<3.4 <3.2	<3.4 <3.2	<3.4 <3.2	<3.4										<3.4
	1/3/20	2.5	0.12	210		<3.2	<3.2	< 3.2	<3.2										<4.1
	12/20/19	3	1.6	1,400	2,600	0.44	0.51	3.0	2.5										13
	12/20/19	5	7.0	5,200	5,000	<230	<230	100	95										1,500
HPK-SB-03	1/3/20	8	0.33	46	53	<3.4	0.57												34
	1/3/20	11	0.14	0.67	<5.0	<3.6	<3.6												<3.6
	1/3/20	14.5	< 0.96	0.74	<5.0	<4.0	<4.0												<4.0

			Petroleu	m Hydroca	arbons			Mateo, C				VOCs							1
FieldPoint ID	Date	Depth (feet)	හි Hall (mg/kg)	PHdL (mg/kg)	omHdT (mg/kg)	Benzene Benzen (µg/kg)	eunen Loluen (µg/kg)	(fay/βπ) (fay/βπ)	Xylenes (hač/kg)	(by 2 DCA (by 2 DCA	(fa/st) (fa/st	(gx/gt) lsopropyl benzene	(βay/ βay/ βay/ N-propyl benzene	(b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	(gaγ/aπ) (ga/βπ)	(fax) (fax)	(gay/gπ) (gay/gm)	(節約) (留本) (留本)
	12/20/10	1																	2.0
	12/30/19	4.5	0.24	3.7	27	<3.9	<3.9	<3.9	<3.9										-2.5
HPK-SB-04	12/30/19	4.3 9.5	0.45	16	38	0.22 <3.6	0.31	<3.5	<3.5										2.6
III K-3D-04	1/3/20	13.5	0.14	1.8 0.89	<5.0 1.9	<3.0	<3.6 2.4	<3.6 5.6	<3.6 24										0.4
	1/3/20 1/3/20	15.5	0.33	0.89	<5.0	<3.6	<3.6	<3.6											
	1/3/20	0.5	0.39	1,800	2,200	<3.5	<3.5	<3.5	<3.5										
	12/20/19	5	0.26	49	730	<4.1	<4.1	<4.1	<4.1										
HPK-SB-05	1/3/20	8.5	0.20	0.60	<5.0	<3.3	<3.3	<3.3	<3.3										
	1/3/20	12.5	0.20	0.00	<5.0	<3.2	<3.2	<3.2	<3.2										
	1/3/20	14.5	0.20	2.3	7.7	<3.2	<3.2	<3.7	<3.2										0.7
	12/19/19	0.5	0.16	320	1,200	<4.9	<0.5	<4.9	<4.9										
	12/19/19	4.5	0.23	11	36	<2.5	<2.5	<2.5	<2.5										.0.5
HPK-SB-06	12/19/19	7	0.17	0.99	2.3	<3.2	<3.2	<3.2	<3.2										
	12/19/19	11	0.21	0.41	<5.0	<3.6	0.22	<3.6	<3.6										
	12/19/19	13.5	0.23	0.53	<5.0	<3.9	0.17	<3.9	<3.9										<3.9
	12/30/19	1	0.17	120	1,400	<6.1	<6.1	<6.1	<6.1								·		<6.1
	12/30/19	5	44	8,200	11,000	<360	<360	<360	<360		·								140
HPK-SB-07	1/3/20	6	2.9	98	110	<3.3	<3.3	<3.3	<3.3								. <u> </u>		1.2
	1/3/20	9	20	730	780	<3.3	<3.3	<3.3	<3.3								·		1.1
	1/3/20	11.5	0.55	2.4	3.0	<3.3	0.25	<3.3	<3.3								·		<3.3
HPK-SB-08	12/20/19	0.5	< 0.93	100	600	<4.1	<4.1	<4.1	<4.1		·								<4.1
	12/19/19	0.5	0.16	3.5	11	<4.5	<4.5	<4.5	<4.5										<4.5
HPK-SB-09	12/19/19	5	0.28	21	190	<3.2	<3.2	<3.2	<3.2								·		<3.2
III K 5D 09	1/3/20	8.5	0.13	1.0	<5.0	<3.0	<3.0	<3.0	<3.0								·		<3.0
	1/3/20	11.5	< 0.95	0.87	<5.0	<3.3	<3.3	<3.3	<3.3										<3.3
	12/20/19	1	0.23	260	770	<4.7	<4.7	<4.7	<4.7										<4.7
HPK-SB-10	1/3/20	4.5	1.1	860	1,300	<3.3	<3.3	<3.3	<3.3		·						·		<3.3
	1/3/20	8	1.2	640	2,300	<4.1	<4.1	<4.1	<4.1		·						·		
	1/3/20	10.5	0.16	4.2	7.1	<3.2	<3.2	<3.2	<3.2								·		•
	12/30/19	0.5	0.2	18	170	<4.2	0.19	<4.2	<4.2								·		
HPK-SB-11	12/30/19	4.5	0.33	180	750	<3.3	<3.3	<3.3	<3.3										
	1/3/20	9	0.37	3.8	21	<3.8	<3.8		<3.8								·		
	1/3/20	14.5	0.28	1.4	3.2	<3.6	<3.6	<3.6	<3.6										<3.6

			Petroleu	m Hydroca	arbons			Maleo, Ca				VOCs							
																	c)		
FieldPoint ID	Date	Depth (feet)	TPHg	TPHd	TPHmo	Benzene	Toluene	Ethyl benzene	Xylenes	1,2 DCA	1,2-DBA	Isopropyl benzene	N-propyl benzene	1,2,4-TMB	1,3,5-TMB	sec-buytl benzene	4-isopropyl toluene	N-buytl benzene	Naphthalene
			(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
	12/30/19	1	0.19	90	490	<4.0	<4.0	<4.0	<4.0										<4.0
	12/30/19	5	45	5,500	6,100	<180	<180	30	<180										130
HPK-SB-12	1/3/20	7	3.5	1,500	1,600	0.65	0.39	2.5	<3.6										9.2
	1/3/20	10	10	1,500	1,500	0.59	0.43	11	5.4										42
	1/3/20	17.5	3.1	760	810	0.31	0.18	4.8	<3.4										15
	1/3/20	20	1.0	320	350	0.42	<3.5	<3.5	<3.5										0.33
MW-1	2/9/21	9	0.084	1.5	3.9	<3.8	<3.8	<3.8	<7.6	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8
MW-2	2/10/21	4.5	0.10	64	49	0.2	<4.0	<4.0	<7.9	<4.0	2.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
MW-3	2/9/21	6	76	6.0	6.2	<210	<210	<210	<420	<210	<210	<210	<210	<210	<210	<210	<210	<210	<210
MW-4		7	0.023	1.4	4.2	<3.4	<3.4	<3.4	<6.8	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
101 00 -4	2/9/21	11	0.021	1.5	3.3	<3.5	<3.5	<3.5	<6.9	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-5		3	44	730	250	<300	<300	94	<600	<300	<300	<300	56	<300	<300	<300	<300	<300	150
IVI VV -3	2/8/21	9	0.030	1.7	4.9	<3.5	<3.5	<3.5	<6.9	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
MW-6		5	17	1.9	4.9	<240	<240	<240	<480	<240	<240	<240	<240	<240	<240	<240	<240	<240	<240
101 00 -0	2/8/21	12	0.033	1.8	5.1	<3.7	<3.7	<3.7	<7.4	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7
		12	0.04	52	43	<3.7	<3.7	<3.7	<7.4	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7	<3.7
MW-7		4	0.078	<10	<20	<4.5	<4.5	<4.5	<9.1	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5	<4.5
	2/10/21	8	0.062	<10	<20	<3.4	<3.4	<3.4	<6.8	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
		4.5	0.045	4.2	<20	<4.0	<4.0	<4.0	<7.9	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0	<4.0
MW-8	2/10/21	9	0.026	<10	<20	<3.4	<3.4	<3.4	<6.8	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4	<3.4
		11.5	0.025	<10	5.4	<3.5	<3.5	<3.5	<7.0	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5	<3.5
	2/9/21	4	250	11,000	3,000	<490	<490	59	<980	<490	<490	99	150	<490	<490	170	<490	150	<490
MW-9		7	67	<10	<20	<190	<190	31	<370	<190	<190	37	52	<190	<190	52	<190	52	<190
	2/10/21	10	0.50	<10	<20	0.2	<3.8	<3.8	<7.6	990	14,000	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8	<3.8
		0.5				<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<2.43	<4.85
W 25	2/22/22	3				<1.78	<1.78	<1.78	<1.78	5.38	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78	<1.78		<3.55
W-25	2/23/22	6				<2.65	<2.65	<2.65	<2.65	4.23	<2.65	<2.65	<2.65	<2.65	<2.65	<2.65	<2.65	<2.65	< 5.30
		10				<23.5	<23.5	<23.5	<23.5	613	<23.5	<23.5	<23.5	<23.5	<23.5	<23.5	<23.5	<23.5	<47.0
		0.5				<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98	<1.98		<3.95
		3				<1.76	<1.76	<1.76	<1.76	<1.76	<1.76	<1.76	<1.76	<1.76	<1.76				
W-26	2/23/22	6				<24.5	<24.5	<24.5	<24.5	<24.5	<24.5	<24.5	<24.5	<24.5	<24.5		<24.5		<48.9
		10				<24.2	<24.2	72.6	<24.2	34.2	<24.2	150	225	140	118	164	71.4	236	
		10				<1.54	<1.54		<1.54	5.24	<1.54	<1.54	<1.54	<1.54					

			Petroleu	m Hydroc	arbons							VOCs							
FieldPoint ID	Date	Depth (feet)	TPHg	ТРНа	TPHmo	Benzene	Toluene	Ethyl benzene	Xylenes	1,2 DCA	1,2-DBA	Isopropyl benzene	N-propyl benzene	1,2,4-TMB	1,3,5-TMB	sec-buytl benzene	4-isopropyl toluene	N-buytl benzene	Naphthalene
			(mg/kg)	(mg/kg)	(mg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	$(\mu g/kg)$	$(\mu g/kg)$	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
	2/23/22	3				<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<1.85	<3.69
W-27		4				<26.2	<26.2	<26.2	59.9	<26.2	<26.2	<26.2	26.4	107	53.5	28.6	48.2	70.4	224
VV -27	2123122	6				<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<1.71	<3.42
		10				<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<2.40	<4.79
		ier 1 ESLs	100	260	1,600	2.5	3,200		2,100	7.0									42
-	osure - Comme		2,000	1,200	18,000	1,400	5,300,000	26,000	2,500,000	2,100									17,000
	rial Habitat (Co	· · ·	120	260	1,600					29,000									28,000
Leaching to G		()	4,900	7,300						31	1.9								1,200
	Gross Contamination gravel (S-4)		1,000	2,300	5,100					3.E+06	1.E+06								280,000
	Gross Contamination - Silt/Sand			8,000	17,000														
	Odor Nuisance (S-5) (Upper 2-feet)		500	1,000						500,000	1.E+06								100,000
	ation Goal - U			1,000															
Remedia	tion Goal - De	eper 2-feet		8,000															

Notes:

TPH: Total Petroleum Hydrocarbons

VOCs: Volatile Organic Compounds

TPHg: Total Petroleum Hydrocarbons as gasoline

TPHd: Total Petroleum Hydrocarbons at diesel

TPHmo: Total Petroleum Hydrocarbons as motor oil

TMB: Trimethylbenzene

mg/kg: milligrams per kilogram

µg/kg: micrograms per kilogram

<3.15: Less than the laboratory-reporting limit of 3.15

DCA: Dichloroethane

DBA: Dibromoethane

Tier 1 ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels (ESLs), February 2019 Tier 2 ESL: ESL excluding leaching to drinking water source and ecological receptors

TABLE 3-2 SUMMARY OF SOIL ANALYTICAL RESULTS - SVOCs, PESTICIDES AND PCBs Caltrain Hayward Park Station

San Mateo, California

							SVOCs						Pestic	ides	
Sample ID	Date	Depth (feet)	Acenaphthene	Anthracene	Benzo(a) anthracene	Chrysene	Fluoranthene	Fluorene	2-Methyl naphthalene	Phenanthrene	Pyrene	Chlordane	Dieldrin	4,4-DDD	PCBs
			(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
W-2	5/23/16	1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650		< 5.00		
		7	<330	<330	<330	<330	<330	<330	<330	<330	<330		< 5.00		
		1	<330	<330	<330	<330	<330	<330	<330	<330	<330		< 5.00		
W-3	5/23/16	3	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650		< 5.00		
		10	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-4	5/26/16	3													
		7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-5	5/23/16	1	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<12.5	<5.00	< 5.00	25.2
vv -5	5/25/10	3	<330	<330	<330	<330	<330	<330	<330	358	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<12.5	< 5.00	< 5.00	<25.0
W-6	5/23/16	2	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<25.0	<25.0	<25.0	<25.0
vv -0	5/25/10	3													
		7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-7	5/26/16	3	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<12.5	< 5.00	< 5.00	<25.0
		10	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-8	5/23/16	3													
		7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650				
W-9	5/24/16	3	<330	<330	<330	<330	<330	<330	<330	<330	<330		< 5.00	< 5.00	
		1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650		< 5.00		
W-10	5/26/16	3													
	-	7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0

TABLE 3-2 SUMMARY OF SOIL ANALYTICAL RESULTS - SVOCs, PESTICIDES AND PCBs Caltrain Hayward Park Station

San Mateo, California

							SVOCs						Pestic	ides	
Sample ID	Date	Depth (feet)	Acenaphthene	Anthracene	Benzo(a) anthracene	Chrysene	Fluoranthene	Fluorene	2-Methyl naphthalene	Phenanthrene	Pyrene	Chlordane	Dieldrin	4,4-DDD	PCBs
			(µg/kg)	(µg/kg)	$(\mu g/kg)$	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)
W-11	5/26/16	1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	14.8	< 5.00		<25.0
	5/20/10	3	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<12.5	< 5.00	< 5.00	<25.0
W-12	5/25/16	3													
	5/25/10	7	<330	<330	<330	<330	<330	<330	<330	<330	<330			< 5.00	<25.0
		10	<330	<330	<330	<330	<330	1,090	<330	1,960	<330			< 5.00	<25.0
W-13	5/24/16	1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650			< 5.00	89.7
	5/24/10	3	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<12.5	< 5.00	< 5.00	<25.0
		1	<1,650	2,160	<1,650	<1,650	2,910	<1,650	<1,650	3,430	3,770	20.5	7.57	< 5.00	40.9
W-14	5/25/16	3													
** 1-1	5125110	7	<1,650	<1,650	2,610	2,390	<1,650	5,930	16,100	8,190	5,680	<12.5	< 5.00	< 5.00	<25.0
		10	<1,650	10,500	5,040	4,050	<1,650	8,420	14,500	9,330	9,860	<125	<50	<50	<250
W-15	5/24/16	1	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<16,500	<12.5	< 5.00	< 5.00	<25.0
W-15	5/24/10	3	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-16	5/23/16	1	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-10	5/25/10	7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-17	5/25/16	1	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
VV -1 /	3/23/10	3	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<125	<50	<50	<250
		1	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<1,650	<25.0	<25.0	<25.0	<250
W-18	5/26/16	4													
		7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		1	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
W-19	5/26/16	3	507	<330	<330	<330	<330	<330	<330	551	<330	<12.5	<5.00	< 5.00	<25.0
		10	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0

TABLE 3-2 SUMMARY OF SOIL ANALYTICAL RESULTS - SVOCs, PESTICIDES AND PCBs Caltrain Hayward Park Station

San Mateo, California

							SVOCs						Pestic	ides	
Sample ID	Date	Depth (feet)	Acenaphthene	Anthracene	Benzo(a) anthracene	Chrysene	Fluoranthene	Fluorene	2-Methyl naphthalene	Phenanthrene	Pyrene	Chlordane	Dieldrin	4,4-DDD	PCBs
			(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	(µg/kg)	$(\mu g/kg)$	$(\mu g/kg)$	$(\mu g/kg)$
W-20	5/24/16	1	<330	<330	<330	<330	<330	<330	<330	<330	<330	109	< 5.00	< 5.00	<25.0
W-20	5/24/10	7	<330	<330	<330	<330	<330	<330	<330	<330	<330	<12.5	< 5.00	< 5.00	<25.0
		Tier 1 ESLs	12,000	1,900	630	2,200	690	6,000	880	7,800	45,000	8.5	0.46	2,700	230
Direct Ex	posure - Co	ommercial (S-1)		2.E+08	2.E+04	2.E+06		3.E+07	3.E+06			2,200	160		
		Plants & Soil		40,000	310,000	18,000				16,000		8.5	110		
Leaching to	o Groundw	ater - NDW (S-		1,900	10,000	10,000		6,000	880	11,000		23,000	6.30		
Gross Cor	ntamination	n - Gravel (S-4)		4,100	1,900,000	2,200		94,000	380,000	69,000		23,000.0	24,000		
Odor Nui	sance (S-5)) (Upper 2-feet)		1.E+06	1.E+06	1.E+06		1.E+06	1.E+06	1.E+06		2.5E+06	1.E+06		
		l - Upper 2-feet		4,100		2,200									
Remedi	iation Goal	- Deeper 2-feet		4,100		2,200									

Notes:

SVOCs: Semi-volatile Organic Compounds

PCBs: Polychlorinated biphenyls

DDD: Dichlorodiphenyldichloroethane

µg/kg: micrograms per kilogram

<330: Less than the laboratory-reporting limit

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels (ESLs), February 2019

Tier 2 ESL excluding leaching to drinking water source and ecological receptors

TABLE 3-3 SUMMARY OF SOIL ANALYTICAL RESULTS - METALS Caltrain Hayward Park Station San Mateo, California

Metals Molybdenum Chromium Mercury Vanadium Arsenic¹ Barium Cobalt Copper Nickel Sample Lead Zinc Date Depth (feet) ID (mg/kg) 1 < 2.5019.4 --------------___ ------3 3.19 6.65 ---___ ___ ___ ---___ ___ ___ W-2 5/23/16 7 13.7 15.5 6.95 40.5 26.7 2.87 283 33.4 < 0.100< 2.50 31.8 10 <2.504.12 --___ ----------------_ <2.50 270 4.9 5.95 <2.50 <2.50 < 0.100 <2.50 <2.50 36.2 84.5 1 3 3.63 26.1 ------------------------W-3 5/23/16 7 <2.508.43 --___ -------___ ---___ 10 2.73 ------7.69 ___ ___ ___ 1 < 2.50 -----2.52 ----------------3 5.03 30.5 ------___ ------___ ___ --W-4 5/26/16 7 <2.50----___ ___ 4.65 ___ ___ ___ _ 70.7 10 8.03 170 86.7 32.3 26.6 14.2 < 0.250 < 2.50 82.9 46.8 29.1 1 4.88 ------------___ ----3 10.1 67.8 26.3 12.6 46.7 15.3 0.178 < 2.50 40.7 29.8 82.2 W-5 5/23/16 7 2.55 8.12 -----10 4.07 9.11 ----------------___ ------1 < 2.50< 2.50---------------------___ 3 40.9 12.2 -----------------------W-6 5/23/16 7 5.40 14.5 ---------------------10 4.31 12.5 ---___ ----___ ___ ___ ___ ---1 < 2.50 <2.50 ---------------------3 2.54 116 ------___ ---___ ------___ W-7 5/26/15 7 4.04 143 31.5 11.1 16.7 9.13 < 0.250 < 2.5030.3 40.9 33.4 10 < 2.50 4.47 -------------___ ----2.83 1 < 2.50 ----------------------3 < 2.50 35.7 --------------------------W-8 5/23/16 7 3.14 9.01 --___ ----___ ___ ___ ___ ---10 12.4 6.02 -----------------------_ 1 4.95 223 37.4 12.1 31.2 19.1 0.11 < 2.50 41.4 43.1 71.8 3 4.07 11.7 ---___ ---___ W-9 5/24/16 7 2.53 8.31 -----------------10 2.60 6.37 ---___ -----___ ___ ------1 <2.50------16.9 ------------------3 4.59 4.19 ------------------------W-10 5/26/16 7 <2.506.65 -------___ < 0.250 < 2.50 47.9 10 148 46.1 18.4 17.4 50.7 36.2 5.00 10 1 3.71 ___ ---40 --___ ___ 219 3 7.85 66.6 14.7 69.6 200 < 0.250 < 2.50 104 36.6 188 W-11 5/26/16 7 8.93 -----228 ___ ___ ___ ___ ___ _ 10 < 2.50 3.82 -------50.7 1 4.67 --------------------3 3.95 144 ----------___ -----___ _ W-12 5/25/16 22.9 7 3.23 105 21.9 8.03 16.2 7.76 < 0.100 < 2.50 18.6 32.8 10 6.19 14.8 ---------___ -----------

TABLE 3-3 SUMMARY OF SOIL ANALYTICAL RESULTS - METALS Caltrain Hayward Park Station San Mateo, California

Metals Molybdenum Chromium Vanadium Barium Arsenic¹ Mercury Cobalt Copper Nickel Sample Lead Zinc Depth (feet) Date ID (mg/kg) (mg/kg)(mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) 1 2.96 22.6 ----------------------3 2.69 16.5 -------___ --------___ -W-13 5/24/16 7.9 7 3.69 ----------___ -------10 3.93 8.24 ---------------------___ 49.6 1 6.31 ---------------------3 5.28 41.3 --------------------------W-14 5/25/16 7 49.2 5.74 -----___ ___ ___ ___ 182 10 5.2 28.4 6.45 18.3 125 0.556 < 2.50 44.6 32.9 59.4 1 < 2.50 6.52 ------------------3 4.08 64.2 ---___ ___ ___ ___ ------___ _ W-15 5/24/16 7.56 7 3.51 249 29.6 9.77 15.6 < 0.100 < 2.50 28.4 43.3 26.4 10 <2.50 4.73 ___ 5.15 <2.50 <2.50 <2.50 32.7 71.5 1 < 2.50 243 5.08 < 0.100 < 2.50 3 8.53 279 -----___ ___ ___ _. W-16 5/23/16 7 7.95 3.86 -----___ ___ ___ ___ 5.24 10 3.07 -------------------------< 2.5015.6 1 -------___ --------------3 11.5 531 --___ -----------------W-17 5/25/16 7 < 2.50 2,640 ---___ ----___ ___ ___ ___ _. 10 < 2.50 107 5.36 < 0.100 <2.50 63.2 34.1 2.68 9.66 26.1 26.4 1 2.64 37.4 -----------___ ___ ------3 4.46 114 25 10.4 17.9 23.1 < 0.250<2.5029.5 32 48.4 W-18 5/26/16 7 < 2.505.08 -----___ ___ ___ ___ ___ ---10 3.20 170 37.1 30.4 16.4 7.27 < 0.250 < 2.50 47.9 38.2 31.7 1 <2.50 18.5 --------------------3 3.49 17.7 ----------------___ ------W-19 5/26/16 7 2.69 5.75 --___ ___ ___ ___ ___ ---___ 10 130 10.2 7.68 < 0.250 <2.50 33.5 35.3 26.2 3.10 30 14.6 1 12.7 106 -------------------3 3.75 -------___ 35.8 ___ ---___ ___ ---W-20 5/24/16 7 7.16 <2.50 ------------------10 7.01 3.37 ----___ ___ ---___ ---___ _. Tier 1 ESLs 0.067 390 23 180 32 13 6.9 340 160 86 18 Direct Exposure - Commercial (S-1) 470 350 320 --------------Plants & Soil 32 ------------.--.--.--18 ---160 Ambient 11 ___ ___ --_ ___ ___ ___ _ Remediation Goal - Upper 2-feet --------------------------Remediation Goal - Deeper 2-feet ---------___ ---------------

Notes:

mg/kg: milligrams per kilogram

--: Not analyzed

<2.50: Less than the laboratory-reporting limit

¹: Background arsenic in the San Francisco Bay Region has been estimated at 15 mg/kg (Regional Board, 1998)

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels (ESLs), February 2019

TABLE 3-4 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - TPH AND VOCs Caltrain Hayward Park Station San Mateo, California

		Total Petro	oleum Hyd	rocarbons			Chlorinate	d VOCs							Pe	troleum Re	elated VOC	Cs						Other	
FieldPoint ID	Date	TPHg	TPHd	TPHmo	PCE	trans-1,2- DCE	CE	СА	СМ	DCM	Benzene	Toluene	Ethyl benzene	Xylenes	1,2-DCA	1,2,4- TMB	1,3,5- TMB	Naph- thalene	TBA	N-Butyl benzene	Isopropyl benzene	N-propyl benzene	Bromo- form	1,2-DBA	Bromo- methane
		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
W-3	5/24/16	<50	325		< 0.500			< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500		< 0.500	< 0.500
W-6	5/24/16	<50	2,950		< 0.500			2.65	7.81		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500		< 0.500	3.08
W-9	5/25/16	<50	838		< 0.500			< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500		< 0.500	< 0.500
W-12	5/25/16	198	11,700		4.76			< 0.500	< 0.500		2.69	0.59	2.29	1.01	< 0.500	< 0.500	0.62	9.87		< 0.500	< 0.500	0.500		< 0.500	< 0.500
W-14	5/25/16	185	8,460		< 0.500			< 0.500	< 0.500		4.62	1.6	1.39	3.63	< 0.500	1.78	0.77	23.5		0.63	< 0.500	1.54		< 0.500	< 0.500
W-15	5/25/16	<50	1,260		< 0.500			< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500		< 0.500	< 0.500
W-17	5/25/16	<50	566		< 0.500			< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500		< 0.500	< 0.500
W-21	5/25/16	<50			< 0.500			< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500		< 0.500	< 0.500
W-22	5/25/16	256	811		<50.0			<50.0	<50.0		<50.0	<50.0	<50.0	<50.0	5,750	<50.0	<50.0	<100		<50.0		<50.0		< 0.500	<50.0
W-23	5/25/16	<50	264		< 0.500			< 0.500	< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	2.89	< 0.500	< 0.500	<1.00		< 0.500		< 0.500		< 0.500	< 0.500
W-24	5/24/16	<50	570		< 0.500			<0.500	< 0.500		< 0.500	<0.500	<0.500	<0.500	< 0.500	< 0.500	< 0.500	<1.00		<0.500		< 0.500		<0.500	< 0.500
HPK-SB-02-GW	1/3/20	< <u></u> 19	420																			<0.300			
ПРК-5D-02-0W	1/3/20	-									<0.5	< 0.5	< 0.5	< 0.5											
HPK-SB-04-GW	1/3/20	60	2,900								0.2	0.4	0.5	0.5											
		62	2,400								0.2	0.5	0.6	0.6											
HPK-SB-10-GW	1/3/20	26									0.1	< 0.5	< 0.5	< 0.5											
HPK-SB-12-GW	1/3/20	94	8,600								2.3	0.4	1.5	1.5											
W-25-12'	2/23/22				<20	<20	<20	<20	<20	<100	<20	<20	<20	<20	2,610	<20	<20	<40		<20		<20	<20	<20	
-					<20	<20	<20	<20	<20	<100	<20	<20	<20	<20	2,740	<20	<20	<40		<20	<20	<20	<20		
W-26-14'	2/24/22				<1.00	<1.00	<1.00	<1.00	<1.00	< 5.00	2.12	<1.00	1.34	<1.00	40.8	1.66	1.01	<2.00		<1.00	1.94	2.24	<1.00	<1.00	<1.00
W-27-12'	2/23/22				< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
W-33-2.5-GW	2/28/22				< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
	2/26/21	150	360								<1.0	<5.0	<5.0	<10											
MW-1	2/26/21	<50	1,000																						
	2/23/22	<50.0	434		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00			< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
MW-2	2/26/21	<50	1,000								<1.0	<5.0	<5.0	<10											
	2/23/22 2/26/21	<50.0 25	1,130 1,400			< 0.500	< 0.500	<0.500	< 0.500	<2.50	<0.500 <1.0	<0.500 <5.0	<0.500 <5.0	<0.500 <10	< 0.500	< 0.500	< 0.500	<1.00				< 0.500	< 0.500	< 0.500	< 0.500
MW-3	5/13/21	<50	1,400		< 0.5	< 0.5	< 0.5	< 0.5	< 0.5	0.8		<0.5	<0.5	0.05	< 0.5	< 0.5	< 0.5	<2.0	1.5				<1.0	< 0.5	<1.0
	2/24/22	<50.0	1,520			< 0.500	< 0.500	< 0.500	< 0.500	<2.50		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00				< 0.500			
	2/26/21	25	810								<1.0	<5.0	<5.0	<10											
MW-4	2/23/22	< 50.0	1,140	924	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
MW-5	2/26/21	<500	1,900								<10	<50	<50	<100											
101 00 -3	2/24/22	< 50.0	3,320		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<1.00		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
	2/26/21	320	1,500								<5.0	<25	<25	<50											
MW-6	5/13/21	<50	3,200		<2.5	<2.5	<2.5	<2.50	<2.5	1.5		<2.5	<2.5	<2.5	<2.5	<2.5	<2.5	<10.0	11				< 5.0		
	2/23/22	<50.0	2,720		< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50		< 0.500		< 0.500	< 0.500	< 0.500	< 0.500	<1.00			< 0.500	< 0.500	< 0.500	< 0.500	< 0.500
MW-7	2/26/21 2/23/22	26 <50.0	630 927		< 0.500	<0.500	< 0.500	< 0.500	< 0.500	<2.50	<1.0 <0.500	<5.0 <0.500	<5.0 <0.500	<10 <0.500	< 0.500	< 0.500	< 0.500			.0.500	<0.500	< 0.500	< 0.500	<0.500	
	2/23/22	<30.0	530			~0.300	<0.300	<0.300	<0.300		<0.300	<0.300	<0.300	<0.300		<0.300	<0.300	<1.00				~0.300	<0.300		<0.500
MW-8	2/20/21	<50.0	470			< 0.500	< 0.500	< 0.500	< 0.500			<0.500		<0.500		< 0.500	< 0.500	<1.00				< 0.500			< 0.500
L	2127122	-50.0	-770	565	-0.500	-0.200	-0.200	-0.200	-0.200	-2.50	-0.500	-0.500	-0.500	.0.000	-0.200	-0.200	-0.500	-1.00		-0.500	-0.500	-0.500	-0.500	-0.200	-0.500

TABLE 3-4 SUMMARY OF GROUNDWATER ANALYTICAL RESULTS - TPH AND VOCs Caltrain Hayward Park Station

		Total Petro	oleum Hyd	lrocarbons			Chlorinate	ed VOCs							Pe	etroleum R	elated VOC	Cs						Other	
FieldPoint ID	Date	TPHg	TPHd	TPHmo	PCE	trans-1,2- DCE	CE	CA	СМ	DCM	Benzene	Toluene	Ethyl benzene	Xylenes	1,2-DCA	1,2,4- TMB	1,3,5- TMB	Naph- thalene	TBA		Isopropyl benzene		Bromo- form	1,2-DBA	Bromo- methane
		(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)	(µg/l)
	2/26/21	46,000	3,300		<130			<250	<130		<130	<130	<130	<250	4,900	<130	<130	<500		<130				50.000	< 500
	5/13/21	220	4,300		<2.5	1.3	1.4	<2.5	<2.5	4.6	1.2	0.7	<2.5	<5.0	38	<2.5	<2.5	<10	11	<2.5			3.6	190	<10
MW-9	3/13/21	280	4,800		<2.5	1.3	1.3	<2.5	<2.5	6.8	1.3	0.9	0.9	0.6	54	<2.5	<2.5	<10	12	<2.5			16	360	<10
	2/24/22	54.90	3,410 ^a	766	< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	0.530	< 0.500	< 0.500	< 0.500	5.21	< 0.500	< 0.500	<1.00		< 0.500			< 0.500	1.39	< 0.500
	2/27/22	50.80			< 0.500	< 0.500	< 0.500	< 0.500	< 0.500	<2.50	0.540	< 0.500	< 0.500	0.500	5.08	< 0.500	< 0.500	<1.00		< 0.5	< 0.5	< 0.5	< 0.500	1.74	< 0.500
]	Tier 1 ESL	100	100		0.64	10	0.0086	16	190	5.0	0.42	40	3.5	20	0.5			0.17	12				80	50	7.5
Aquatic I	Protection	440	640		120	590	780		1,100	2,200	46	130	43	100	10,000			15	18,000				1,100	1,400	160
Gross Cont	tamination	50,000	2,500		50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000	50,000			16,000	50,000				50,000	50,000	50,000
Odor Nuisar	nce Levels	5,000	5,000		3,000	2,600	34,000	160		91,000	20,000	400	300	5,300	200,000			210					5,100		
Vapor Intrusion - C	ommercial				2.8	920	0.14	97,000	1,100	94	1.8	4,900	15	1,600	9.8			20					510	0.76	73
Maximum Contami	nant Level				5.0	10	0.5	21,000	190	5.0	1.0	40	30	20	0.5			0.17	12				80	0.05	7.5
Rem	edial Goal				2.8		0.14				1.8				9.8										

Notes:

TPH: Total Petroleum Hydrocarbons

VOCs: Volatile Organic Compounds

TPHg: Total Petroleum Hydrocarbons as gasoline

TPHd: Total Petroleum Hydrocarbons as diesel

TPHmo: Total Petroleum Hydrocarbons as motor oil

PCE: Tetrachloroethene

DCE: Dichloroethene

CE: Chloroethene (aka vinyl chloride)

CA: Choroethane

CM: Chloromethane

DCM: Dichloromethane (aka Methylene Chloride)

DCA: Dichloroethane

TMB: Trimethylbenzene

TBA: Tert Butyl Alcohol

DBA: Dibromoethane

µg/l: Micrograms per liter

<0.500: Less than the laboratory reporting limit of 0.500

a: Unknown hydrocarbon with several peaks

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels (ESLs), February 2019, Rev.2

TABLE 3-5 SUMMARY OF SOIL GAS ANALYTICAL RESULTS - VOCs Caltrain Hayward Park Station

San Mateo, California

							Chlo	orinated VO	Cs							Ре	etroleum R	elated VO	Cs			Atmo	spheric Ga	ases		,
FieldPoint ID	Depth (feet)	Date	PCE	TCE	cis-1,2- DCE	trans-1,2- DCE	CE	CA	СМ	1,1-DCE	1,2-DCA	1,2-DCP	1,3-DCB	Benzene	Toluene	Ethyl benzene	Xylenes	1,2,4- TMB	1,3,5- TMB	Naph- thalene	1,2-DBA	Methane	Carbon Dioxide	Oxygen	Vacuum	Helium Leak Check
	(ft bgs)		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$		$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	$(\mu g/m^3)$	(% V)	(% V)	(% V)	(Inches Hg)	(% V)
W-2	3.5	5/23/16	< 6.78	< 5.37	<3.97		<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	6.19	3.67	24	<4.34	6.95	6.49	<4.92		1.00					'
W-5	3.5	5/23/16	<6.78	< 5.37	<3.97		<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	< 6.01	7.28	21	<4.34	15.5	7.23	<4.92							Ļ'
W-8	3.5	5/24/16	<6.78	< 5.37	<3.97			<2.64	<2.07	<3.97	<4.05	<4.62	7.58	7.7	46.5	<4.34	<4.34	<4.92	<4.92							<u> </u>
W-13	3.5	5/24/16	10.3				<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	< 6.01	4.66	6.26	<4.34	<4.34	<4.92	<4.92							·'
W-16	3	5/25/16	<6.78				<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	8.66	9.81	11.5	<4.34	<4.34	<4.92	<4.92							·'
W-20	3.5	5/24/16	<6.78	<5.37	<3.97		<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	7.94	6.49	11	<4.34	<4.34	<4.92	<4.92		1.00					<u> </u>
W-28	4	2/25/22 2/25/22	<6.78 <6.78	<5.37 <5.37	<3.97 <3.97	<3.96 <3.96	<2.56 <2.56	6.65 6.33	8.55 8.47	<3.97 <3.97	<4.05 <4.05	<4.62 <4.62	<6.01 <6.01	285 283	122 119	95.4 92.4	541 527	611 604	237 230	154 175	<7.68		0.251	19.4	-4	<0.100 <0.100
W-29	4	2/25/22	< 6.78	<5.37	<3.97	<3.96	<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	< 6.01	145	155	46.0	116.8	12.7	5.56	6.81	<7.68	0.235	4.11	12.0	-6	< 0.100
W-30	4	2/25/22	< 6.78	< 5.37	<3.97	<3.96	<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	< 6.01	34.0	38.2	138	213	27.7	21.9	29.7	<7.68	26.8	< 0.100	5.12	-4	< 0.100
W-32	4	2/24/22	< 6.78	< 5.37	<3.97	<3.96	<2.56	<2.64	<2.07	<3.97	<4.05	9.29	< 6.01	111	335	117	214	204	137	10.4	<7.68	5.23	< 0.100	14.7	-4	< 0.100
W-34	4	2/24/22	<67.8	103	44.8	109	97.3	188	<20.7	277	1,780	<46.2	<60.1	271	162	124	<43.4	<49.2	<49.2	<52.4	<76.8	25.7	4.76	10.6	-16	< 0.150
W-35	4	2/24/22	< 6.78	< 5.37	<3.97	<3.96	<2.56	13.7	<2.07	<3.97	<4.05	<4.62	< 6.01	16.9	58.6	9.16	28.6	5.46	<4.92	<5.24	<7.68	< 0.100	0.839	21.5	-6	< 0.100
W-36	2.5	2/24/22	< 6.78	< 5.37	<3.97	<3.96	<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	< 6.01	10.4	57.7	5.60	13.5	<4.92	<4.92	<5.24	<7.68	1.38	0.595	14.7	-3	< 0.100
W-37	4	2/25/22	< 6.78	< 5.37	<3.97	<3.96	<2.56	<2.64	<2.07	<3.97	<4.05	<4.62	< 6.01	10.4	38.7	6.12	<4.34	<4.92	<4.92	<5.24	<7.68	6.32	0.869	5.44	-3	< 0.100
		Tier 1 ESL	15			2,800	0.32	350,000	3,100	2,400	3.6	9.4		3.2	10,000	37	3,500			2.8	0.16					'
		ercial ESL	67	100	1,200	12,000	5.2	1,500,000	13,000	10,000	16	41		14.0	44,000	160	15,000			12	0.68					·'
	ESL - Gara	0												112		1,200				,0						└─── ′
	P - No bioa													280		2,000				510						<u> </u>
LTCP -	Bioattenua													280000		360,000				310000				> 4.0		<u> </u>
Notes:	Reme	edial Goal		100			5.2				16			280000		360000				310000						!

Notes:

VOCs: Volatile Organic Compounds

DBA: Dibromoethane

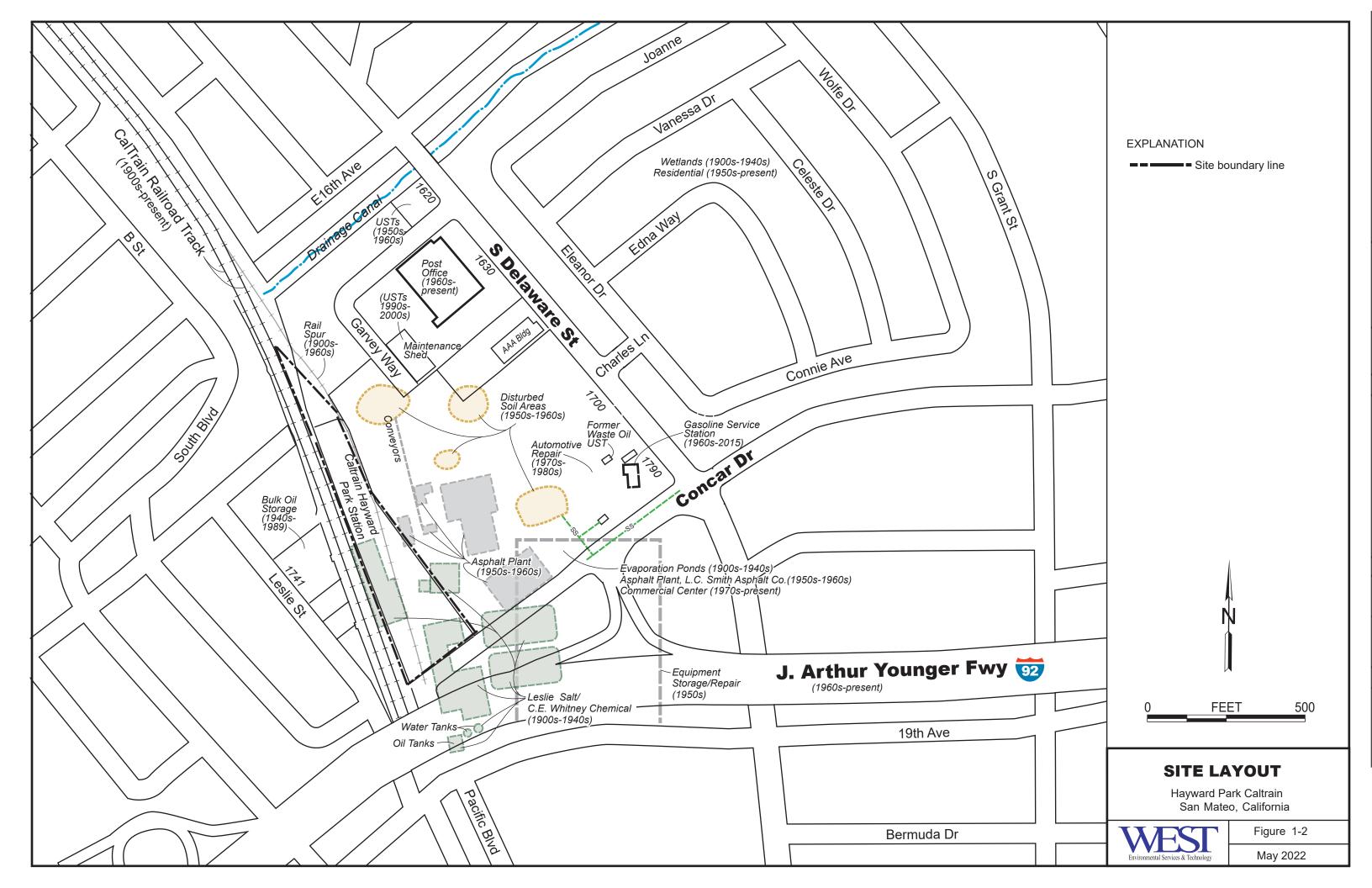
PCE: TetrachloroetheneCA: ChloroethaneTCE: TichloroetheneDCA: DichloroethaneDCE: DichloroetheneDCP: Dichloropropane

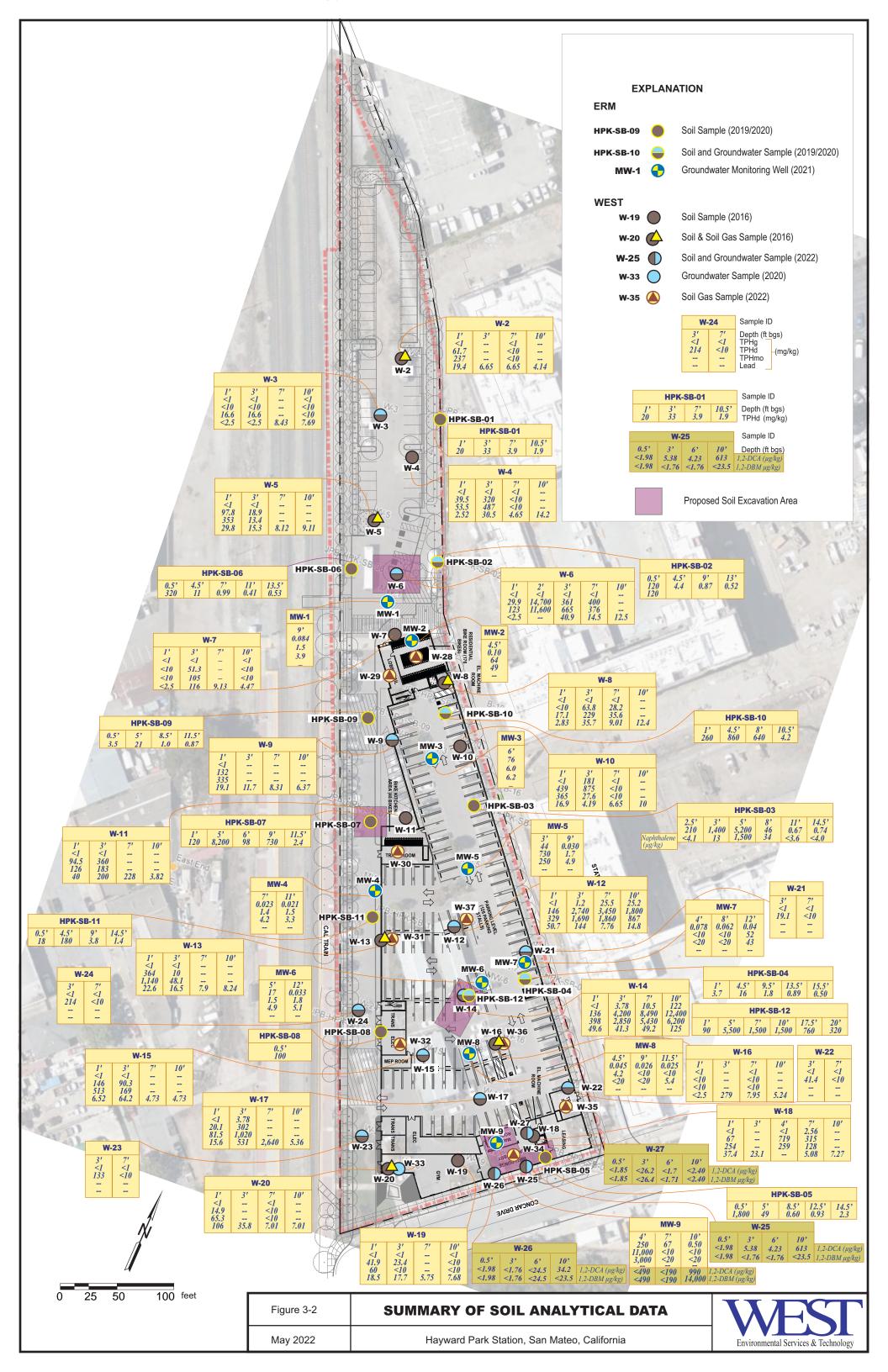
CE: Chloroethene DCB: Dichlorobenzene

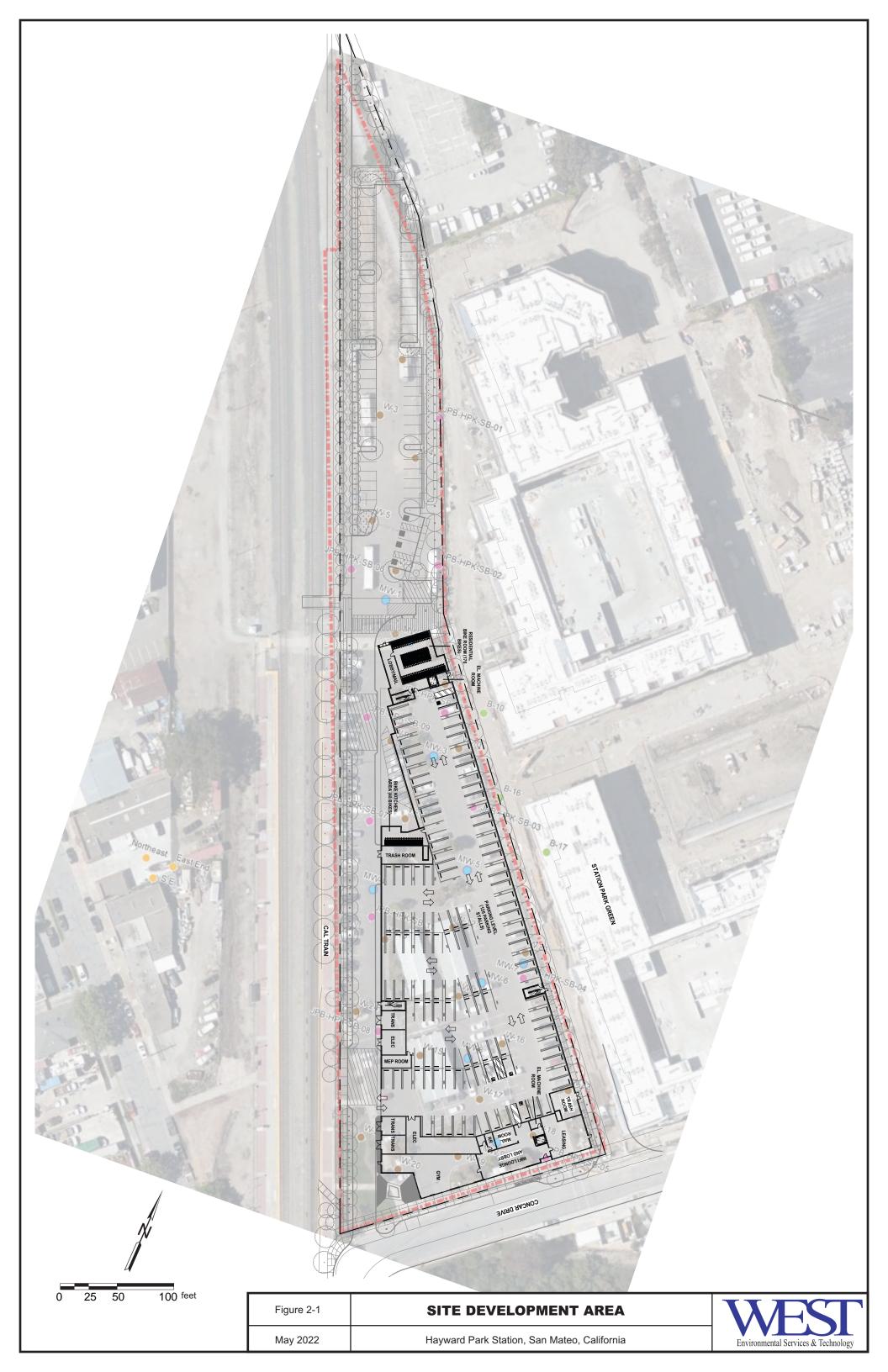
 $\mu g/m^3$: micrograms per cubic meter TMB: Trimethylbenzene

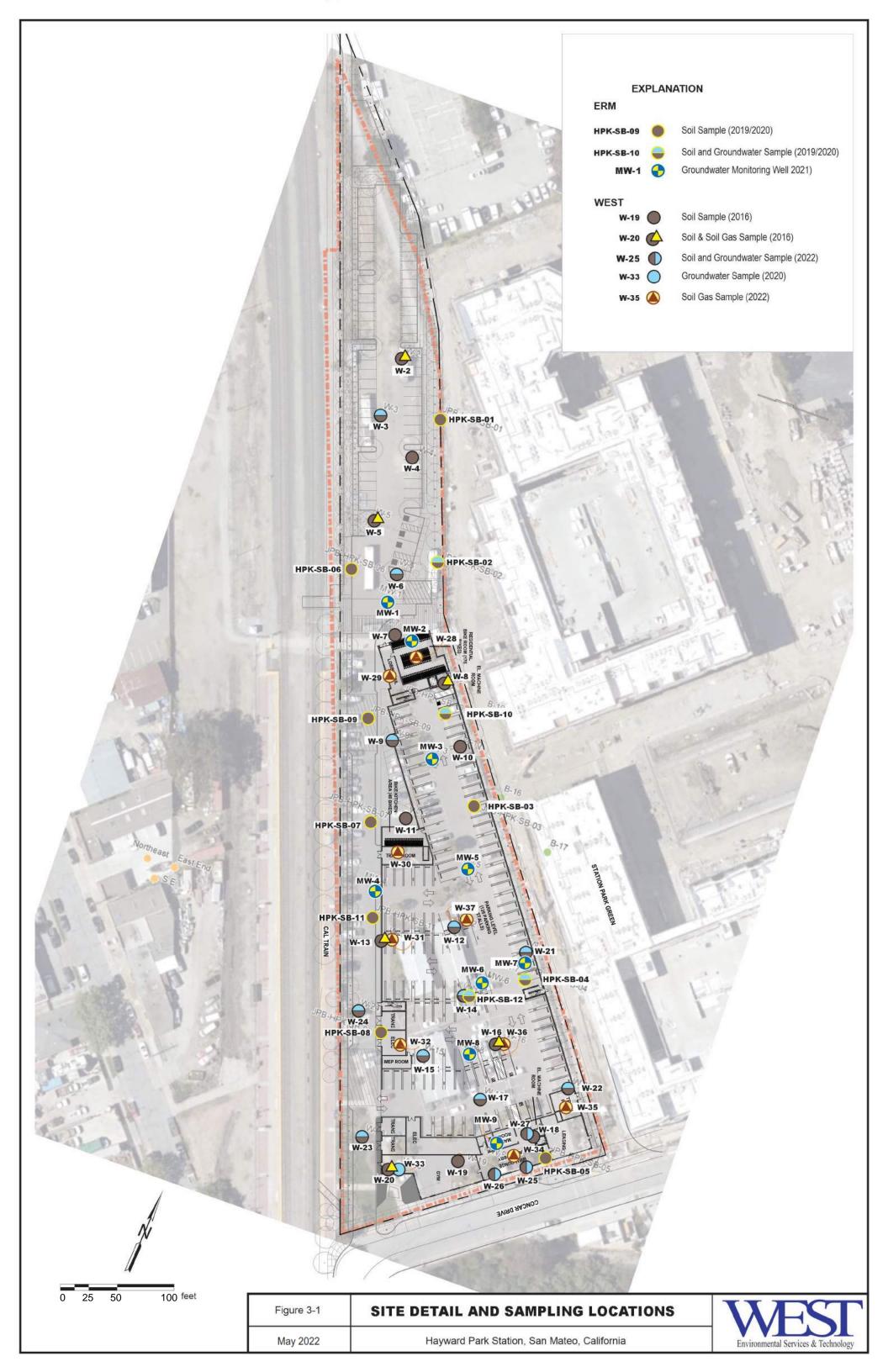
<6.78: Less than the laboratory-reporting limit of 6.78

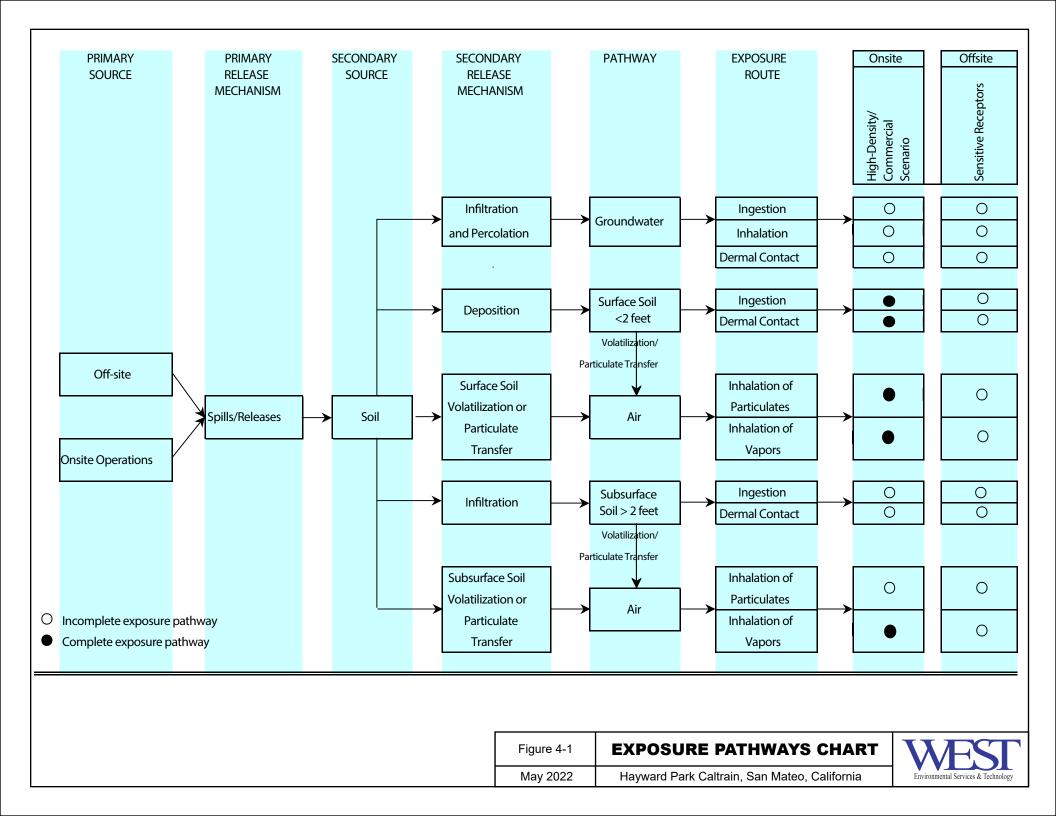
--: Not available

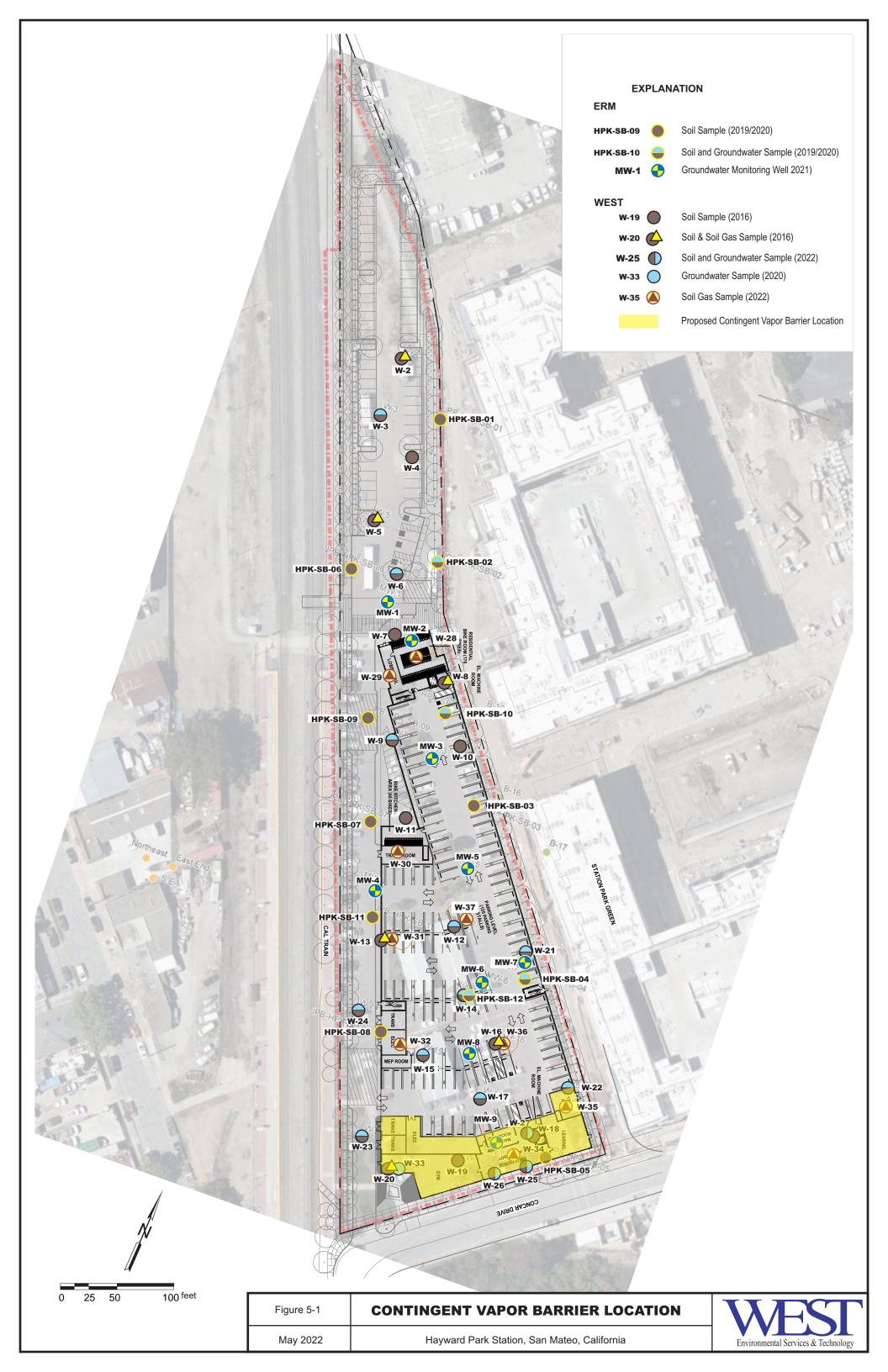

ESLs: California Regional Water Quality Control Board - San Francisco Bay Region Environmental Screening Levels (ESLs), February 2019, Rev.2

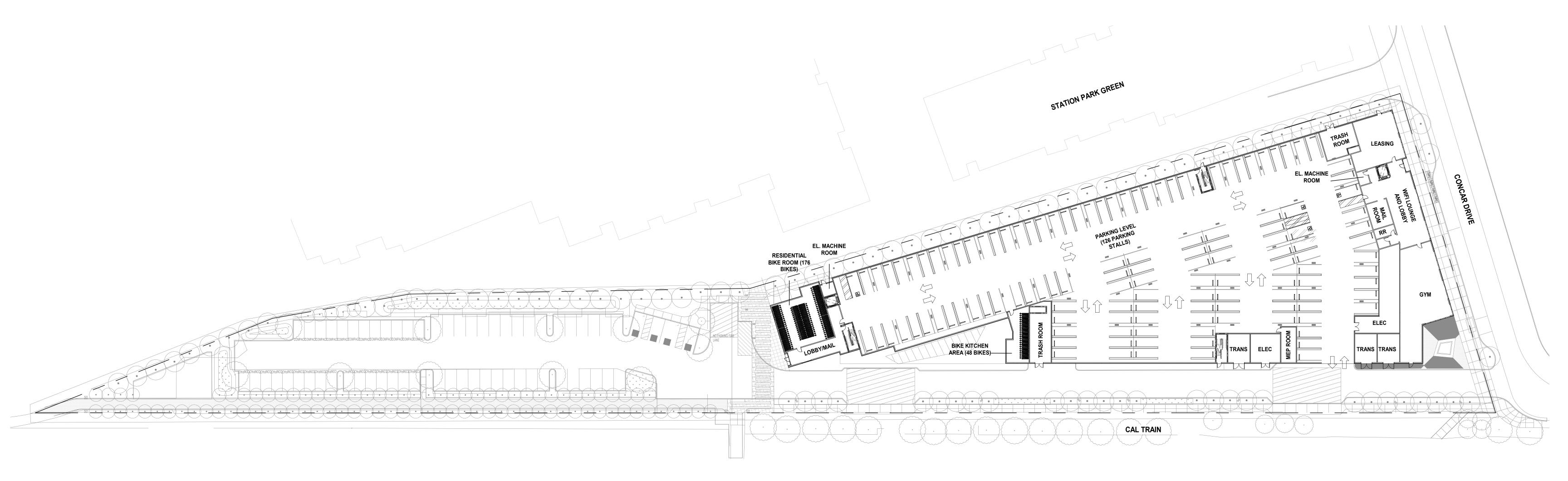

LTCP: Water Quality Control Policy for Low-Threat Underground Storage Tank (UST) Case Closure, 2012.




FIGURES

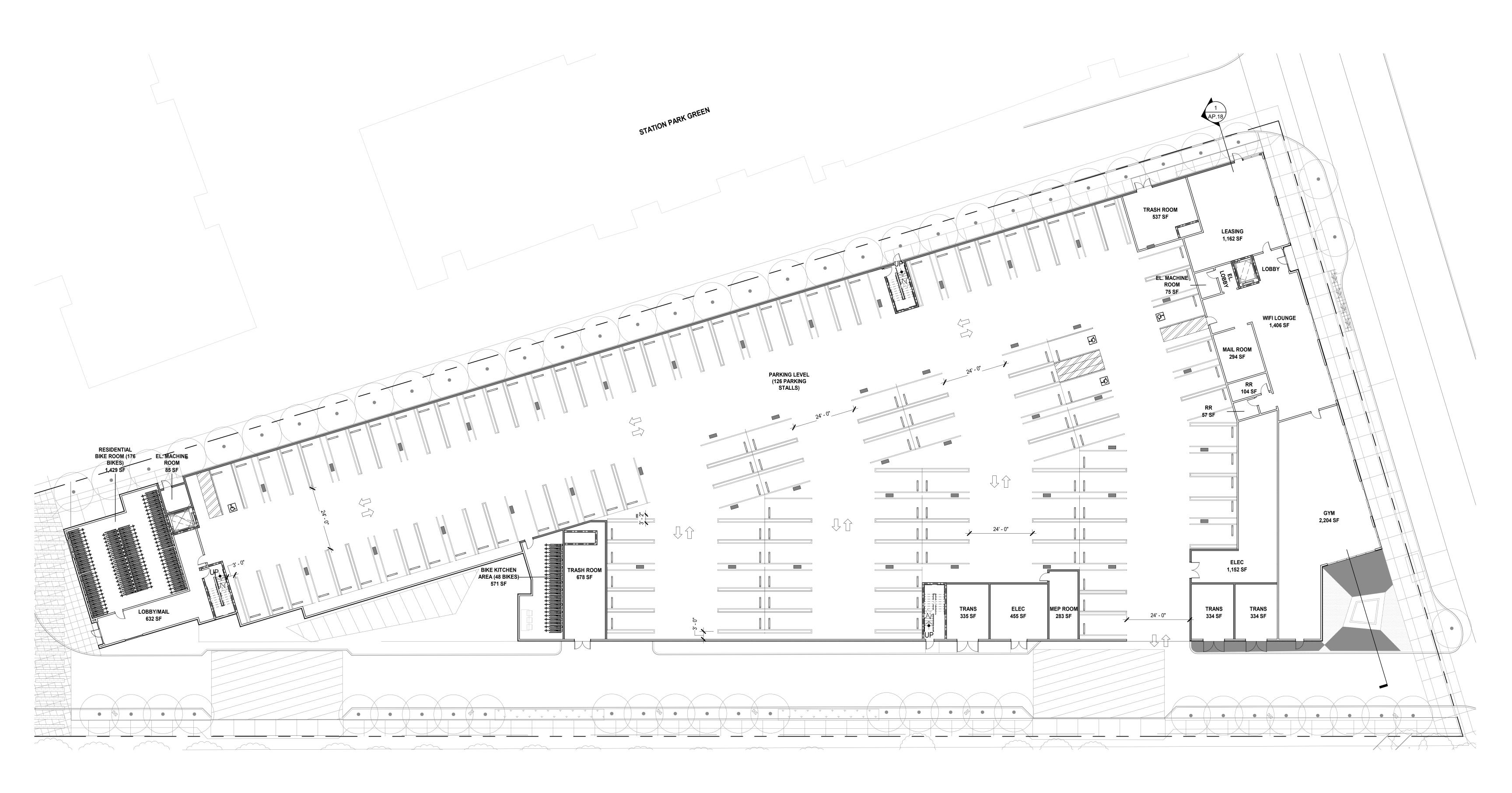






APPENDIX A

SELECTED DEVELOPMENT PLANS


HAYWARD PARK, SAN MATEO, CA

SITE PLAN AP.01

32'

N

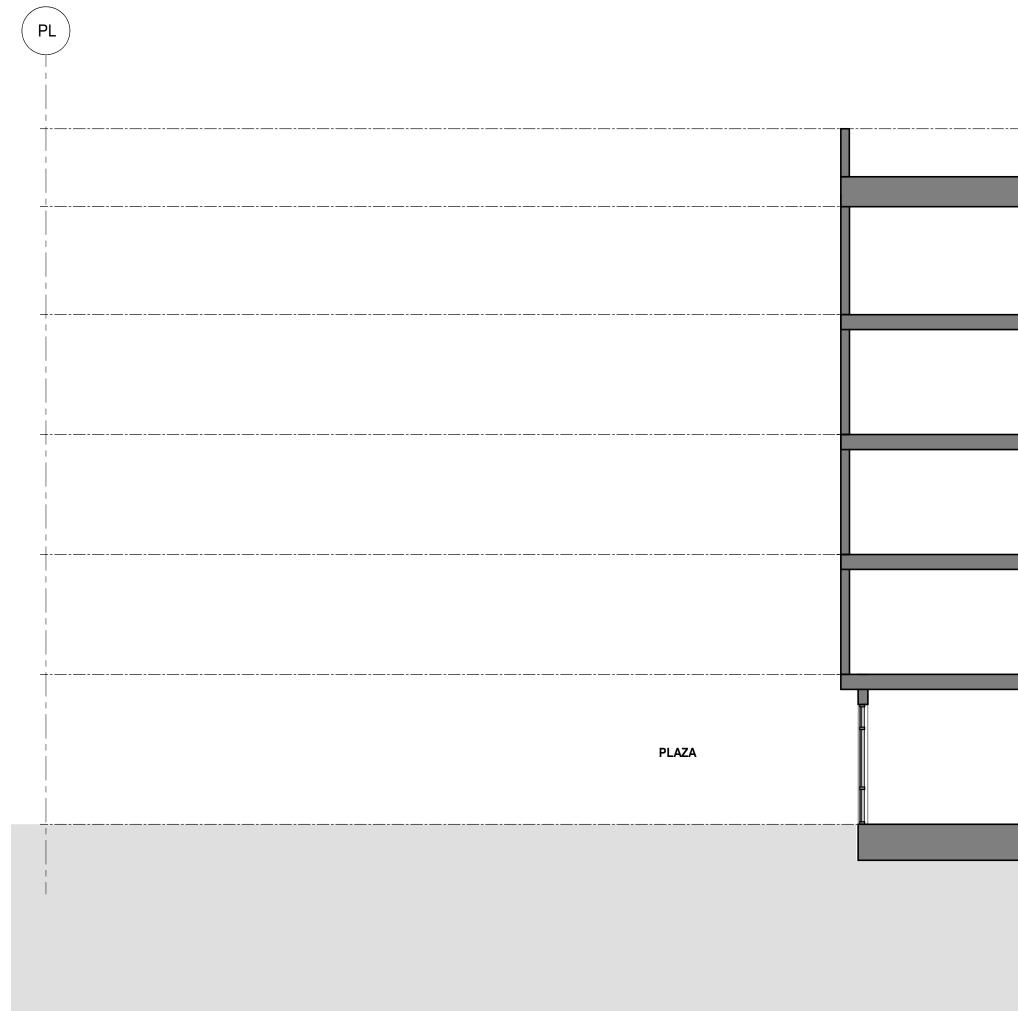
0' 8' 16'

0' 8' 16'

32'

32' N

0' 8' 16'

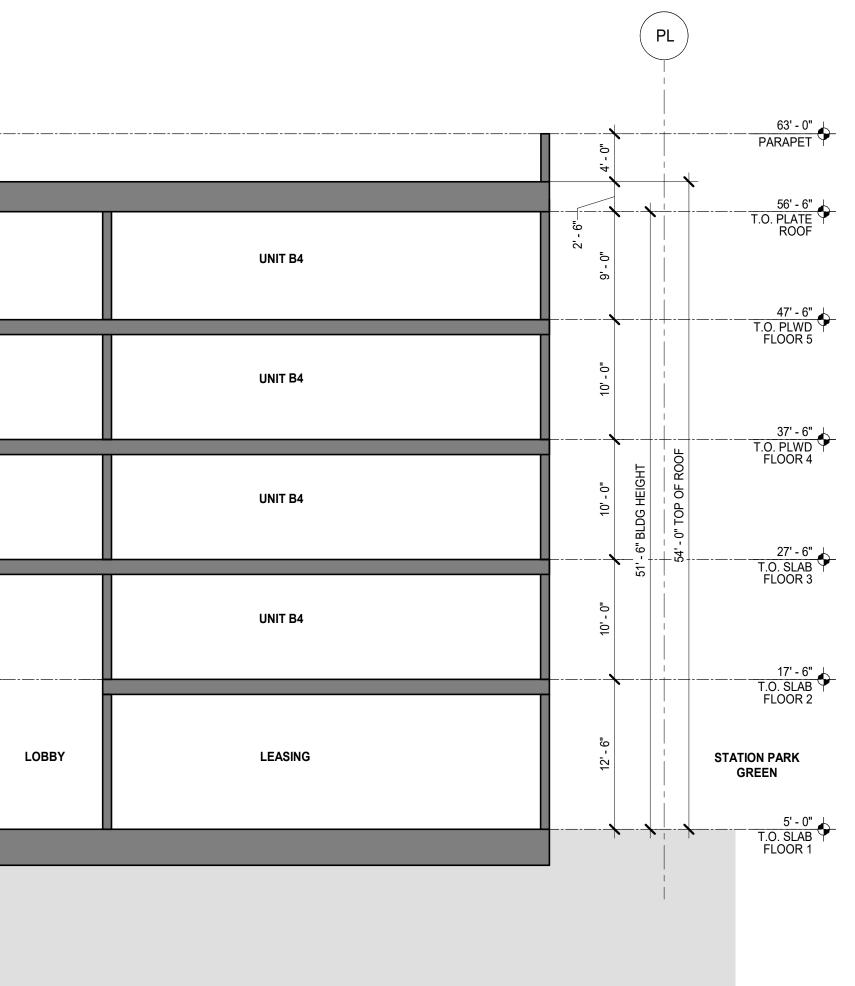


0'8'16'

03/17/2021

32'

AP.06



UNIT B3	UNIT A1	UNIT A1	UNIT A4
UNIT B3	UNIT A1	UNIT A1	UNIT A4
UNIT B3	UNIT A1	UNIT A1	UNIT A4
UNIT B3	UNIT A1	UNIT A1	UNIT A1
GYM		WIFI LOUNGE	

BUILDING SECTION AP.18

0' 4' 8'

16' N

APPENDIX B

BORING LOGS

Environmental Services & Technology	Client:WESTBORINProject:Regis.HaywardParkWell No.W-2Address:401 Concar Dr., San Mateo, CAPage:1 of	
Drilling Start Date:02/23/2022 09:40Drilling End Date:02/23/2022 10:00Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:SMCH EHS # 22-0239Logged By:Aaron Kalter (WEST)	Boring Depth (ft):12.0Well Depth (ft):12.0Boring Diameter (in):2.25Well Diameter (in):1.0Sampling Method(s):Direct PushScreen Slot (in):0.010DTW During Drilling (ft):10.0Riser Material:Sch 40DTW After Drilling (ft):1.7 (12:31 PM)Screen Material:TemporGround Surface Elev. (ft):N/AWell Screen removed followLocation (Lat, Long):37.55294, -122.30870Boring Backfill: Cement Ground	ary Prepack (7-12-ft) ing sampling: Yes
DEPTH (ft) LITHOLOGY WATER LEVEL TEMPORARY WELL Sample Type Time Time Core Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Notes DEPTH (ft)
0 - - - - - - - - - - - - -	(0') Asphalt (0.5') Well-graded SAND with gravel (SW); mostly fine-coarse grained sand, little coarse gravel, few silt, loose, moist, brown (10YR 5/3)	
5 - - - - - - - - - - - - - - - - - - -	(5') Clayey SAND (SC); fine-medium grained, little clay, poorly graded, medium dense, moist, very dark gray (10YR 3/1) (7') Color change to Dark Gray, 2.5Y 4/1	05 0.1 0
10 10 10 10 10 10 10 10 10 10	(10') Poorly graded SAND (SP); medium-coarse grained, medium dense, wet, yellowish brown (10YR 5/6)	01000 0 0 0
	(12') Boring terminated	15 15
20 NOTES: Hole precleared by ECA using	g hand auger. Water sample W-25-12 collected at 7.0-12.0ft bgs.	20

Diffing Stant Date: 0223/2022 19:50 Diffing Gammet (n): 14.0 Boring Damiter (n): 14.0 Diffing Methods: Direct Push	Environmental Services & Technology	Client:WESTBORINGProject:Regis.HaywardParkWell No.W-26Address:401 Concar Dr., San Mateo, CAPage:1 of 1	S LOG
0 0	Drilling End Date:02/24/2022 15:15Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:SMCH EHS # 22-0239	Boring Diameter (in): 2.25 Well Diameter (in): 1.0 Sampling Method(s): Direct Push Screen Slot (in): 0.010 DTW During Drilling (ft): N/A Riser Material: Sch 40 PV DTW After Drilling (ft): 2.1 (12:28 PM) Screen Material: Temporar Ground Surface Elev. (ft): N/A Well Screen removed followin	y Prepack (9-14-ft) g sampling: Yes
1 1 1 0 (0) Poorly graded SAND with silt (SP-SM); fine-medium grained, trace fine-coarse 0 1 1 2.00 1 100 (0) Poorly graded SAND with silt (SP-SM); fine-medium grained, trace fine-coarse 0 1 1 2.00 1 1 0 0 0 1 4 2.00 (0.5) Concrete 0 0 0 0 (3) Sandy lean CLAY (CL); some fine sand, high plasticity, soft, moist, very dark gray (5Y 3/1) 0 0 - 0 5 - - - - - - 0 - - - 0 - - - 0 - - - 0 - - 0 - - 0 - - 0 - - - 0 - - 0 - - 0 - - 0 - - 0 - 0 - 0 - 0 - 0 <td< th=""><th>DEPTH (ft) LITHOLOGY WATER LEVEL TEMPORARY WELL Sample Type Sample Type Time Ocore Interval (ft)</th><th>SOIL/ROCK VISUAL DESCRIPTION</th><th>(tt) H</th></td<>	DEPTH (ft) LITHOLOGY WATER LEVEL TEMPORARY WELL Sample Type Sample Type Time Ocore Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	(tt) H
	Image: second system Image: second system <td< td=""><td>(0.5') Concrete (1') Poorly graded SAND with silt (SP-SM); fine-medium grained, trace fine-coarse gravel, few silt, medium dense, moist, very dark grayish brown (10YR 3/2) (3') Sandy lean CLAY (CL); some fine sand, high plasticity, soft, moist, very dark gray (5Y 3/1) fine (5') Clayey SAND (SC); grained, some clay, poorly graded, medium dense, moist, very dark gray (10YR 3/1), Strong petroleum odor (8.5') Poorly graded SAND (SP); medium-coarse grained, medium dense, moist, yellowish brown (10YR 5/6)</td><td></td></td<>	(0.5') Concrete (1') Poorly graded SAND with silt (SP-SM); fine-medium grained, trace fine-coarse gravel, few silt, medium dense, moist, very dark grayish brown (10YR 3/2) (3') Sandy lean CLAY (CL); some fine sand, high plasticity, soft, moist, very dark gray (5Y 3/1) fine (5') Clayey SAND (SC); grained, some clay, poorly graded, medium dense, moist, very dark gray (10YR 3/1), Strong petroleum odor (8.5') Poorly graded SAND (SP); medium-coarse grained, medium dense, moist, yellowish brown (10YR 5/6)	

Environmental Services & Technology	Client:WESTBORIProject:Regis.HaywardParkWell No.W-1Address:401 Concar Dr., San Mateo, CAPage:1 or	
Drilling Start Date:02/23/2022 08:20Drilling End Date:02/23/2022 09:35Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:SMCH EHS # 22-0239Logged By:Aaron Kalter (WEST)	Boring Depth (ft):12.0Well Depth (ft):12.0Boring Diameter (in):2.25Well Diameter (in):1.0Sampling Method(s):Direct PushScreen Slot (in):0.010DTW During Drilling (ft):3.75Riser Material:Sch 44DTW After Drilling (ft):3.0 (12:30 PM)Screen Material:TempeGround Surface Elev. (ft):N/AWell Screen removed follorLocation (Lat, Long):37.55299, -122.30877Boring Backfill: Cerment G	orary Prepack (7-12-ft) wing sampling: YES rout (Ratio 47 pounds
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Time Core Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Meason Notes DEPTH (ft)
0 	 (0.5) Conclete (1.5') Poorly graded SAND with silt (SP-SM); fine-medium grained, trace fine-coarse gravel, few silt, medium dense, moist, very dark grayish brown (10YR 3/2) (3.5') Becomes saturated with asphalt/petroleum substance at 3.75 feet bgs (5') Clayey SAND (SC); fine grained, some clay, poorly graded, loose, wet, very dark gray (10YR 3/1) (7') Color change to Dark Gray, 2.5Y 4/1 	0
	ng hand auger. Water sample W-27-12 collected at 7.0-12.0 ft bgs.	20

(1) (MEASUR (mdd) MEASUR	eel ntonite
(I) III III III IIII IIII IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PID (ppm) Notes	TH (ft)
0.5 0.5 (0') Asphalt 0.5 0.5 (0.5') Poorly graded SAND (SP); medium-coarse grained, trace fine gravel, loose, moist, brown (7.5YR 4/2) 1.5 0.00 (1.5') No Recovery		
$[\bullet] = [\bullet] (W) = 2/25/22$		

Environmental Services	& Technology	Client:WESTTEMPORARY VAPOProject:Regis.HaywardParkWell No.W-29Address:401 Concar Dr., San Mateo, CAPage:1 of 1	OR PROBE LOG
	2022 14:24 Push	DTW After Drilling (ft): N/A Screen Material: Six-inch si	5-inch diameter) ainless steel ydrated bentonite
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION	Sample Type Time Core Interval (ft) Becovery (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Notes DEPTH (ft)
	SG 2/25/22 -29 09:44	(0') Asphalt (0.5') Poorly graded SAND (SP); medium-coarse grained, trace fine-coarse gravel, loose, moist, brown (7.5YR 4/2) (2') Brick fragments (3.5') Poorly graded SAND with silt (SP-SM); fine-medium grained, little silt, medium dense, moist, very dark gray (10YR 3/1), Strong petroleum odor (4.5') Boring terminated	

Environmental Services & Technology	Client:WESTTEMPORARY VAPOProject:Regis.HaywardParkWell No.W-30Address:401 Concar Dr., San Mateo, CAPage:1 of 1	DR PROBE LOG
Drilling Start Date:02/23/2022 13:50Drilling End Date:02/23/2022 14:12Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:Not RequiredLogged By:Aaron Kalter (WEST)	DTW After Drilling (ft): N/A Screen Material: Six-inch st	5-inch diameter) ainless steel /drated bentonite
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Time OCore Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Notes DEPTH (ft)
	(0') Asphalt (0.5') Poorly graded SAND with gravel (SP); fine-coarse grained, little fine gravel, medium dense, moist, dark brown (7.5YR 3/3) (3.5') Color change to Dark Gray, 7.5YR 4/1 (4.5') Boring terminated	
20 NOTES: Following soil vapor gas samp	bling, the tubing was removed and the boring annulus sealed with Portland Type II cen	20

Drilling Start Date: 02/02/0000 40:40	Address: 401 Concar Dr., San Mateo, CA Page: 1 of 1	
Drilling Start Date:02/23/2022 12:10Drilling End Date:02/23/2022 12:33Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:Not RequiredLogged By:Aaron Kalter (WEST)	DTW After Drilling (ft): N/A Screen Material: Six-inch s	25-inch diameter) tainless steel tydrated bentonite
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Sample Type Time Core Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	MEASURE (mpm) Me
	trace silt, loose, moist, brown (10YR 5/3) (1.5') Concrete (2') Poorly graded SAND with silt (SP-SM); fine grained, few silt, medium dense,	

Environmental Services & Technology	Client:WESTTEMPORARY VAPOProject:Regis.HaywardParkWell No.W-33Address:401 Concar Dr., San Mateo, CAPage:1 of 1	PR PROBE LOG
Drilling Start Date:02/24/2022 12:00Drilling End Date:02/24/2022 12:15Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:Not RequiredLogged By:Aaron Kalter (WEST)	DTW After Drilling (ft): N/A Screen Material: Six-inch st	5-inch diameter) ainless steel rdrated bentonite
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Core Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Notes DEPTH (ft)
	(0) Asphalt (0.5') Poorly graded SAND with silt (SP-SM); fine-medium grained, few fine gravel, little silt, dense, moist, very dark grayish brown (10YR 3/2) (3') Wet at 3 feet (4.5') Boring terminated	
NOTES: Following soil vapor gas samp	bling, the tubing was removed and the boring annulus sealed with Portland Type II cem	ent

Environmental Services & Technology	Client:WESTTEMPORARY VAPProject:Regis.HaywardParkWell No.W-34Address:401 Concar Dr., San Mateo, CAPage:1 of 1	OR PROBE LOG
Drilling Start Date:02/23/2022 11:00Drilling End Date:02/23/2022 11:15Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:Not RequiredLogged By:Aaron Kalter (WEST)	DTW After Drilling (ft): N/A Screen Material: Six-inch s	25-inch diameter) tainless steel ydrated bentonite
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Time Core Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Notes DEPTH (ft)
0 0 0 0 0 0 0 0 0 0 0 0 0 0	(0') Asphalt (0.5') Concrete (1.5') Poorly graded SAND with silt (SP-SM); fine-medium grained, few fine gravel, little silt, dense, moist, very dark grayish brown (10YR 3/2) (4.5') Boring terminated	0 0.6 0.1 0.3 1.6 -5 - - - - - - - - - - - - -

Environmental Services & Technology	Project: Regis.HaywardPark Well No. V	VAPOR PROBE LOG V-35 of 1
Drilling Start Date:02/23/2022 11:20Drilling End Date:02/23/2022 11:34Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:Not RequiredLogged By:Aaron Kalter (WEST	DTW After Drilling (ft): N/A Screen Material: Six- Ground Surface Elev. (ft): N/A Seal Material(s): Dry	
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Time	(I) SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) MEA2DLE Notes DEPTH (ft)
0 - - - - - - - - - - - - -	(0') Asphalt 4.00 (0.5') Poorly graded SAND (SP); fine-medium grained, few fine gravel, medium dense, dry, brown (10YR 5/3) (2') Poorly graded SAND with silt (SP-SM); fine-medium grained, few silt, dense, moist, brown (10YR 5/3) (3.5') Poorly graded SAND (SP); fine grained, medium dense, moist, dark olive gra (5Y 3/2) (4.5') Boring terminated	0 0 0 0

Environmental Services & Technology	Client: WEST TEMPORARY VAPO Project: Regis.HaywardPark Well No. W-36 Address: 401 Concar Dr., San Mateo, CA Page: 1 of 1	DR PROBE LOG
Drilling Start Date:02/23/2022 11:45Drilling End Date:02/23/2022 12:00Drilling Company:ECADrilling Method:Direct PushDrilling Equipment:MacrocorePermit No.:Not RequiredLogged By:Aaron Kalter (WEST)	DTW After Drilling (ft): N/A Screen Material: Six-inch st	5-inch diameter) ainless steel ⁄drated bentonite
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Core Interval (ft)	SOIL/ROCK VISUAL DESCRIPTION	PID (ppm) Notes DEPTH (ft)
	(0') Asphalt (0.5') Well-graded SAND with gravel (SW); fine-coarse grained, little fine-coarse gravel, trace silt, medium dense, moist, very dark gray (2.5Y 3/1) (3.5') Becomes wet (4.5') Boring terminated	0 0 0.1 0 0.3 - - - - - - - - - - - - -
NOTES: Following soil vapor gas samp	ling, the tubing was removed and the boring annulus sealed with Portland Type II cen	nent

Drilling Start Date: 02/23/2022 13:10 Boring Depth (ft):		Page: 1 of 1		
Drilling End Date:02/23/2022 13:20Boring Diameter (in):Drilling Company:ECASampling Method(s):Drilling Method:Direct PushDTW During Drilling (ft)Drilling Equipment:MacrocoreDTW After Drilling (ft):Permit No.:Not RequiredGround Surface Elev. (Logged By:Aaron Kalter (WEST)Location (Lat, Long):	2.25 W Direct Push Sc): N/A Ri N/A Sc ft): N/A Sc	creen Material: Six-inch s	5-inch diam tainless stee ydrated ben	əl
DEPTH (ft) LITHOLOGY WATER LEVEL COMPLETION Sample Type Time Core Interval (ft) Recovery (ft)	OIL/ROCK VISUAL DESCRIPTIO	N	PID (ppm) Notes	DEPTH (ft)
-4.0 gravel, trace silt, loose, mo	vith silt (SP-SM); fine-medium gra		0.1 0 0.3 0.1	0

APPENDIX C

FIELD DATA FORMS

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • I/ax 415.460.6771 main@westenvironmental.com

GROUNDWATER ELEVATION FIELD DATA SHEET

Project: Regis.Hayward Park Station

Location: 601 Concar Drive, San Mateo, California

Groundwater Sampling Date:

February 23, 2022

Well ID	Date	Time	Well Depth	Well Casing Diameter	Screen Interval	Top of Casing Elevation	Depth to Water	Groundwater Elevation	Comments
		(24 hr)	(fl)	(in)	(ft bgs)	(ft msl)	(fibtoc)	(ft msl)	
MW-1	2/23/22	0928	10	2	3-10	11.32	5,93	5,39	open Deppons
MW-2	\wedge	0905	10	2	3-10	11.15	5.10	6.05 5.05	clear out 69420 Otoppus
MW-3		0910	10	2	3-10	10.76	5.68	5.08	clear and a Y AD Ostpons
MW-4		0915	12	2	3-12	12.23	5.01	722	О.Яррани
MW-5	1	0932	10	2	3-10	10.53	2.92	7.61	Jearout 37720 Qoppon
MW-6		0924	13	2	3-12	10.16	580	4,36	Gener 1" Ago Oppon
MW-7		0921	12	2	3-12	9.69	6.13	3,56	0.0ppms
MW-8	1	0935	12	2	3-12	10.38	4.92	5,46	0.0ppm/
MW-9	2/3/22	0940	10	2	3-10	10.44	5,21	5,23	0.0ppm

Notes:

ft bgs: feet below ground surface

ft BTOC: feet helow top-of-casing

ft msl: feet above mean sea level

	1-11	N-1				UU - 1 GING DAT	Δ.		un	e 92	3/22	
WELL DIAMETER WELL VOL		TUBING DIAMET	TER (instea): /	225 3	LL SCREEN	NTERVAL DEP 10 (It bgs) TH TO WATER)	H. STATIC	DEPTH	7993	9/COEP	TH OF WELL (He 10.01)	
CONVICTION OF	il applicable)		=(= PUMP VOL	UNE + (TUS)	ng CAPACITY	X X TUBING LE	liter NGTH) + F	Not =	L VOLUN		
NITIAL PUR	P OR TUBING VELL (feet):	° 7	FINAL PUMP	OR TUBING	ns+(Ptipono	x NT: 1555	PURG ENDE	ING		TOTAL VOLUME PURGED (Ners)	E
TIME	VOLUME PURCED (illers)	PURGE RATE (L/min.)	DEPTH TO WATER (feet)	TEMP (°C)	pH (standard units)	EC (circle units) umhos/cm	TURBIDITY (FTUs)	DIS90 0000 %	LVED	ORP (mV)	COLOR (detcribe)	ODOR (describe
600	0.2	0,1	6.12	15.4	2.32	<u>ni yishem</u> 1947	0.00	ation B.S	0,79	57	Nordor Clar	None
603	0.5	0.1	6.16	16.8	7.08	9.41	0.00	5.0	0.55	54	II.	11
606	0.0	0.1	6.18	17.1	7.02	9.39	0.00	5,5	0.51	52)/	×
609	hel	0.1	6.2.7	169	7.01	9.43	0.00	4.8	0.44	51	H	12
612	14	0,1	6.26	16.8	7.02	9.46	0.00	45	0.41	50	4	1
619	1.7	0.1	6:27	16.8	7.01	9.48	0.00	4.3	0.40	48	11	Xe.
618	2.0	011	6.29	16.8	7.01	9.49	0.00	4.2	0.39	47	21	-11
								-		_		

	hin incl	c¥.	SAMPLER(S) SIGNA	211		INITIATED AT: 16	20 BAMPUN	
TUBING WELL (feet)	7		TUBING MATERIAL CODE:	ß		ICATE: Y (N)	~ 1	
CONTAMINATIO	ON: PU	MP Y (тиви	NG Y (V (replaced) >	Xu - 23			
PLE CONTAINS	R SPECIFIC	ATION	8/	MPLE TREATMENT		INTENDED	SAMPLING	SAMPLE PLANP
2 CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	FIELD-FILTERED (Y or N) FILTER SIZE (um)	AND	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (L per minute)
4	v	40 ml	HCI	N		VOCs (8260B); TPHG (8015M)	PÉ, PP	0.1
1	AG	1L	None	N		TPHd (8015M)	PE, PP	0.1
ŧ.								S
AND SAMPLI PP = Penstallic	NG EQUIPMI Pump; SP -	ENT CODES	AG = Amber Gless; Pump; B = Baller; C =	CG = Clear Gass; PE = Other (specify)	Polyethy	ians; PP = Polypropyle	ne; S = Silleor	e; T = Teffor;
on Pollada			the second s	the second s	nexe: ± 3	W Dissolved Oxygen: +	0.3 morL: ORP: -	-10 mV
T T T T T T T T T T T T T T T T T T T	MELL (Feet) ONTAMINATIO PLE CONTAINE CONTAINERS 4 1 1 AND SAMPLI P = Penstallo	AND SAMPLING EQUIPM Part Sector	WELL Good 7 CONTAMINATION: POMP PLE CONTAINER SPECIFICATION PLE CONTAINERS CODE VOLUME 4 V 4 V 4 V 4 V 1 AG 1 AG 1 AND SAMPLING EQUIPMENT CODES: P = Penstallic Pump; SP = Submersible i	MELL Geets T INATERIAL CODE: INATERNAL CODE:	MELL Seet: 7 MATERIAL CODE: CONTAMINATION: PUMP Y N TUBING Y N TUBING PLE CONTAINER SPECIFICATION SAMPLE TREATMENT CONTAINERS MATERIAL VOLUME PRESERVATIVE FIELD-FILTERED (Y or N) GONTAINERS CODE VOLUME 4 V 40 ml 1 AG 1L None N	MELL Seet: 7 MATERIAL CODE: Duple CONTAMINATION: POMP Y N TUBING Y N (replaced) PLE CONTAINER SPECIFICATION SAMPLE TREATMENT SAMPLE TREATMENT CONTAINERS MATERIAL VOLUME PRESERVATIVE FIELD-FILTERED (Y or N) AND 4 V 40 ml HCI N 1 AG 1L None N	WELL Seet: 7 MATERIAL CODE: Duplicate Sample to CONTAMINATION: POMP V N TUBING Y N (replaced) PLE CONTAINER SPECIFICATION SAMPLE TREATMENT INTENDED ANATERIAL CODE VOLUME PRESERVATIVE FIELD-FILTERED (Y or N) AND ANALYSIS AND/OR 4 V 40 ml HCI N VOCs (8260B); TPHG (8015M) 1 AG 1L None N TPHG (8015M) 1 AG 1L None N TPHd (8015M) P = Penstation Codes AG = Amber Glass; CG = Clear Glass; PE = Polyethylens, PP = Polypropyle P = Penstation Pump; SP = Submensible Pump; B = Baller; C = Other (specify) PE = Polyethylens, PP = Polypropyle	WELL Seet: 7 Material CODE: Duplicate: T CONTAMINATION: PUMP V N TUBING Y N (replaced) PLE CONTAINER SPECIFICATION SAMPLE TREATMENT INTENDED SAMPLING B MATERNAL VOLUME PRESERVATIVE FIELD-FILTERED (Y or N) AND FIETER SIZE (µm) ANALYSIS AND/OR METHOD SAMPLING 4 V 40 ml HCI N VOCs (8250B); TPHG (8015M) PE, PP 1 AG 1L None N TPHd (8015M) PE, PP AND SAMPLING EQUIPMENT CODES AG = Amber Gase; CG = Clear Gase; PE = Polyedhylana; PP = Polypropylone; S = Silloor

NAME: NA	YWARD PAR	CALTRAIN S	TATION			TE CATION: 401 C	ONCAR DRIVE	SAN MAT	EO. CA			
WELL NO:	MI	N-2-		SAMPLE		MLO-	the second s			TE 1	123/2	2
						GING DAT						
DIAMETER			TER (inchusic	2.20	S (Rbos) to	INTERVAL DEP 10 (it bgs)	TOWAT	DEPTH ER (feet)	8090 9.10	S DEP	9.86	TOC
(only so eat	a sbbacspie)		-1	feet		TH TO WATER)	X WELL	CAPACITY	sfoot =		iers.	
built six con	e obhermañ)		IPMENT VOL.	PUMP VOL	UME + (TUB	NG.CAPACITY liters/tool	X TUBING LE	NGTH) + F feel) +	LOW CE	LE VOLUM	E	
	WP OR TUBIN	ª 7	FINAL PUMP DEPTH IN W		3 7	PURGING INITIATED	AT. 1024	PURG		044	TOTAL VOLUM PURGED (illers)	
TIME	VOLUME	PURGE	DEPTH TO	TEMP.	pH (standard	EC (circle units)	TURBIDITY	DISSO		ORP	COLOR	ODOR
	(iters)	(LAmin.)	(feet)	(ବିଦ)	unite)	umbos/cm or #5/cm	(FTUs)	% satur- stion	mgi.	(mV)	(describe)	(describe)
024	0	-0.1	5.49	18.9	7.23	8,99	0.00	13.4	1.21	12	dar	nome
027	0.3	0.1	5.49	18.2	7.23	8.95	0.00	108	9.01	-8	24	17
030	0.6	0.1	5.54	17.9	7.26	8.94	0.80	9,8	0,91	-18	to vear	31
033	0.9	0.1	5.59	17.8	7.24	8.95	3.43	8.0	0.74	-37	16	- 33
036	1.2	0.1	557	17.8	7.25	8.95	2.74	24	0.69	~39	i t	11
039	15	0.1	5.59	17.8		8.96	2.60	72	0.67	-41	11	(/
042	1.9	0.1	5.62	17.8	7.25	8.97	2.26	7.2	0.66	-42	. 11	11
	-											
									_			
UELL CAPA	CITY (Liters P	er Footx 0.78	1/8" = 0.002;	=0.15; 1;	25" = 0.23;			2.5; 5" " = 0.623		8" = 5.8; 0.038	12" = 22.5 5/8" = 0.051	

	2065a M		WEST	SAMPLER(S) SIGN	TURE(S):	SAMPLING INITIATED AT: 10	15 SAMPLI	
PUMP OR DEPTH IN	TUBING WELL (feel):	17		TUBING MATERIAL CODE:		Duplicate y		
FIELD DE	CONTAMINATE	ON: PU	WP Y A	TUBI	NG Y (NTreplaced)			
BAM	PLE CONTAIN	ER SPECIFIC	ATION	a	WPLE TREATMENT	INTENDED	SAMPLING	SAMPLE PUMP
S/MPLE D CODE	E CONTAINERS	MATERIAL CODE	VOLUME	USED	FIELD-FILTERED (Y or N) ANI FILTER SIZE (µm)	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (L per minute)
Mui 2	4	v	40 mi	HCI	N	VOCs (8260B); TPHG (8015M)	PE, PP	0.1
MW-2	1	AG	1L	None	N	TPHd (8015M)	PE, PP	0.)
		-						
REMARKS	k.							2
MATERIAL V=VOA:	AND SAMPLE PP = Pensiallic	NG EQUIPME Pump, SP =	ENT CODES	AG = Amber Glass; Pump; B = Bailer; O =	CG = Class Glosts; PE = Pol Other (specify)	yethylane; PP = Polypropyl	ene; 8 = Silico	ne; T = Teffon;
					±0.2 °C): Specific Conductance	+ 3%: Dissolved Oxygen: +	0.3 mg/L: ORP;	±10 #/V

WELL NO:	MIA	-3		SAMPLE	1D: 11	110-3	10220200	111100	1000000	DA	TE: 2/2	2/22 \$ 23	/24/22
	1 100					GING DAT	A			10.1	100	rac of 7	ample
WELL DIAMETER			TER (Inches):	0.25 3	(tbgs) to	NTERVAL DEPT	TH: ST. TO		DEPTH (DR (feet):	the for	DEP	TH OF WELL (eet:
(only fill out	il applicable)		=(10	feet -	- Fr.	TH TO WATER)	x v	RELLC	APACITY	/toot =		iters #3=2	
EQUIPMEN (only fill out	IT VOLUME PL	JRGE: 1 EQU	IPMENT VOL	= PUMP VOL	UME + (TUBI rs + (NG CAPACITY Iters/foot	X TUBB X	AG LEN	NGTH) + F feet) +			NE = ittp	ns.
	MP OR TUBINK WIELL (Meet):	3 7		VP OR TUBING WELL (fort)	8,5	PURGING INITIATED	m 111	9	PURG		153	TOTAL VOLUN PURGED (htm	
TIME	VOLUME PURGED (Ibirs)	PURGE RATE (Limin.)	DEPTH TO WATER (1990)	TEMP. (⁰ C)	pH (standard units)	EC (circle units) µmhas/cm orvjaS/cm	TURRIC (FTU		DISSO OXYO setur- ation		ORP (mV)	COLOR (describe)	ODOR (describe
1121	0.2	0.1	5.90	14.9	7.52	9.67	0.6	0	15.6	1.48	-2	Hear	NOOM
1124	0.5	0.1	6.09	15.3	7.47	9.54	0.0		10.2	1.02	-19	1/	11
1127	0.8	0.)	6.28	19.5	7.44	9.52	0.0	0		0.81	-30	D V	- 11
1130	1.7	0.1	6.36	15.4	7.35	9.55	0.4	00	7.2	0.74	- 50	5 N	3.3
1133	2.0	0.3	6.90	85	7.31	9,54	0.9	1	6.5	063	-55	the second second second second	11
1136	2.9	0.3	2.19	166	730	7.58	1.0	3	5.3	0.90	-62	? Riats	14
1139	3.8	0.3	7.40	15,00	7.31	9.58	0.7	2	49	0.45	-69	3 11	- 0
1142	4.7	0.3	7.92	2 19.9	7.29	9,55	0.0	0	4.5	0.42	-68	3 11	31
1145	5.6	0.3	7.69	19.7	7.30	956	0,0	0	44	0,41	-69	r H	11
1148	6.5	0.3	7.90	15.8	7.30	9.54	0.0	0	4.2.	0.39	-70	1 ¹	11
1151	7.4 ACITY (Liters P	0.3	8.20	1 15.8	7.29	9.53	D.0	-	4.1	0.30	- 70) N	11
TUSING IN	SIDE DIA, CAP		1/8" = 0.00		25" = 0.23; 005; 1/4" :		" = 0.015;		s" = 0.023;		6" = 5.8; = 0.038;	12" = 22.3 5/8" = 0.051	
1340	8.0 4.0	-	6.77		SAMP	LING DA		/22	110			O'ETCC SE ETCC	
SAMPLED	BY (PRINT) / N Redain		VEST	SAMPLER(S)	SIGNATURE				SAMPL		4/22	SAMPLING ENDED AT	118
PUMP OR T	TUBING WELL (feel):	<7		TUBING MATERIAL CO		PE			CATE: Y	(N)	1102	4	
	ONTAMINATIO	N: PUM	PYC	5	TUBING	Y (N (replac	Approximation of the						
SAMPLE	LE CONTAINE	R SPECIFICA		PRESERVAT		TREATMENT	Y or his and	0		ENDED		AMPLING S	AMPLE PUM FLOW RATE
ID CODE	CONTAINERS 4	CODE	40 ml	USED		FILTER SIZE		-	1	ETHOD (82608	0:	CODE PE_PP	()., per minute)
MW-3	1	AG	16	None		N			TPHO	G (8015M)	10	PS PP	6/
MW.3				110110	_			_		an ranny	_	(Heler C. C.)	0.1
REMARKS:													
	AND SAMPLIN P = Perstable					- Clear Giasa; specify)	PE = Pr	olynethyl	iane; P	P ~ Polyp	ropylana,	S = Silcons;	T = Tellor;
Stabilizatio	on Crileria: pe	H: ± 0.1 S.U. 1	Ternperature:	+ 3% of readin	n (min + 0.2 *	C) Reseller Co	aductore	ar a 98	C. Dimah	od Crown		nai - 000-+10	πV

SITE NAME: HAY	NARD PARK	and the second states are set of the	TATION	1		CATION: 401 DO	INCAR DRIVE.	SAN MATEO			r . 7	
WELL NO:	MU	0-4		SAMPLE	1.1.1	1-4			DAT	E 74	23/22-	
		- maile				GING DAT	at the second seco		6TD1	Inter	01 0C 10C 11 (here)	
WELL DIAMETER		DIAMET	'ER (inchos): G	27 22	(It logs) to		TO WATE	ER (feet): 5			LI.92	
only fill out	il applicable)		=(_feet -		teel)	х	liters.ft		CONCEPTION OF	mu	
	T VOLUME PUR Repticable)	rge: 1 Equ	IPMENT VOL. =	PUMP VOL	UME + (TUBI ns + (Illersfoot	X TUBINGLEI X	Inat) + FL	OW CEL	L VOLUM		
NETIAL PUR DEPTH IN V	VELL (feet):	8	FINAL FUMP DEPTH IN W		8	PURGING INITIATED A	m 1511	PURGE	AT: 13	31	TOTAL VOLUME PURGED (Illers):	
	VOLUME	PURGE	DEPTH	TEMP	pH	EC (circle units)	TURBIDITY	DISSOL		DRP	COLOR	ODOR
TIME	PURGED (itens)	RATE (Limin.)	TO WATER (feet)	(°C)	(standard units)	gr 48/cm	(FTUS)	96 satur- sation	argit.	(m'v')	(describo)	(describe)
1313	0.2	0.1	5.73	17.0	7.64	9.76	6.00	12.9	1.2)	51	dear	None
1914	0.5	0.)	5.76	19.1	7.60	9.67	0.00	12.5	0.82	45	yellow s	N I
1319	0.8	0.1	5,50	15.5	7.52	9.65	0,00	68	0.64	38	, 11	1/
322	1.1	0,1	5.83	16.0	7.47	9.58	0.00	6.4	0.59	32	I(t(
1325	1.09	0.1	5.86	16.0	7.46	9.55	0.00	6.2	0,58	29	15	<i>i</i> i
320	1.7	0.1	5.89	16.1	7.44	9.53	0.00	6.1	0.57	28		15
1331	2.0	0.1	5.13	16.2	7.42	9.53	0.00	59	0.54	27	1L	LØ.
					1							
			1									
					1							
WELL CAP	ACITY (Liters P	er Footi: 0.7	75" = 0.08; 1"): 1/8" = 0.062;		25" = 0.23; 0.006; 1/4"			= 2.5; 5" #"= 0.023;	= 3.8;	6" = 5.6; = 0.038;	12" = 22.3 6/8" = 0.061	

SAMPLED	BY (PRINT) / A Priata	MOCK	WEST	SAMPLER(S) SIGNA	M		SAMPLING	2. SAMPLE	
PUMP OR DEPTH IN		8		TUBING / MATERIAL CODE:	RE		ICATE: Y (N) alle Sample ID:		
FIELD DEC	CONTAMINATI	IN: PU	IP Y ()	TUB!	NG Y (Nimplaced)	22			
SAM	PLE CONTAIN	IR SPECIFIC	ATION	8/	WPLE TREATMENT		INTENDED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	CONTAINERS	MATERIAL	VOLUME	PRESERVATIVE	FIELD-FILTERED (Y or N) FILTER SIZE (um)	AND	ANALYSIS AND/OR NETHOD	CODE	FLOW RATE (L per minute)
MULY	4	V	40 mi	HCI	N		VOCs (8260B); TPHG (8015M)	PE, PP	0.1
MW-4	1	AG	11	None	N		TPHd (8015M)	PE, PP	0.1
REMARKS	5:			<u>ا</u> ــــــــــــــــــــــــــــــــــــ					
MATERIA V = VOA:	L AND SAMPL	NG EQUIPM	ENT CODES: Submersible	AG = Amber Gass Pump; B = Bailer; O =		Polyeth	ylene; PP = Polytsopy	iene; 8 = Silico	ne; T = Tellon,
And the second second second	and a second second second second second			and the second se	+ 0.2 °C): Specific Condunta	ince: ±	%: Dissolved Oxygen: 5	0.3 mg/L: ORP:	±10 mV

WELL NO:		COALTRANS		SAMPLE		GATION: 401 C	enterin entre.	Section and the	T	TE Z	lauton	he de la
The children	ſ	111-5		STORP CE	p.	W-5			04	ME 4	24/22	zinselució
WELL		TUBING	5	Lion	and the second se	GING DAT	Contraction of the second s	DEPTH IS	ur. 4	17		
DIAMETER		- DIAMET	TER (inches): C.	25 3	· (filoga) to	10 (Rock)	TO WAT	TER (reel)c	2.92	DEP	17A 5	in TOC
(only fill out i	f applicable)		=(foel		TH TO WATER)	X WELL X	CAPACITY	Auct -	-		
COUPMEN (only BLock)	T VOLUME P i applicable)	URGE: 1 EQU	IPMENT VOL.	= PUMP VOL	UME + (TUB rs + (ING CAPACITY Morsifoot	X TUBING LE	NGTH) + F		LL VOLUMI liters		
INITIAL PUR DEPTH IN V	VP OR TUBIN VELL (foot):	g 7	FINAL PUMP DEPTH IN W		' 7	PURGING INITIATED	AT. 0824	PURG	NG C	852	TOTAL VOLUM PURGED (Iters)	
TIME	VOLUME	PURGE	DEPTH	TEMP.	pH	EC (circle units)	TURBIDITY	DISSO		ORP	COLOR	COOR
11445	(itiera)	RATE (L/min.)	WATER (Real)	(°C)	(standard units)	pinthos/cm or pS/cm	(FTUs)	% satur- ation	mg/L	(Vm)	(describe)	(describe)
0826	0.2	0.)	322	14.7	7.91	9.61	4.44	9.8	0.92	-64	Xallow Clater	Petro)
\$29	Ø,\$	0.1	3.25	15.4	7.80	9.70	2.00	8.5	0.90	-78	33	je.
0832	0.9	0.	3.27	15.6	7.76	9.66	1.88	7.2	0.6b	-90	11	15
0839	1.	0.1	3,30	15.9	7.73	9.60	1.40	8.2	0.58	-86	10	n
0838	1.4	0.1	331	16.2	7.73	9.55	1.22	68	054	-87	t (11
0841	17	0.1	333	16-6	7.72	9.50	1.00	9.4	0.50	-99	CF .	26
0844	2.0	0.1	3.35	16.8	7.7)	9.48	0.55	5.2	Q48	-89	11	1
2847	2.3	0.1	3.35	16.9	7.71	9.46	0.46	5.1	0.47	-86	20	- 11
0890	2.6	0.1	3.39	16.9	7.70	9,45	0.39	5.1	0.46	-86	1	11
										-		
NELL CAP	CITY (Litera i	PerFool: 0.7	5" = 0.06; 1 ⁰	=0.15; 1.	78'' = 0.23;	2*=0.61; 3	"=0.1.4; 4"	=2.5 5*	= 3.9:	6" = 5.6;	12" = 22.5	

SAMPLED	BY (PRINT) / A RELATION	Mode		SAMPLER(S) SIGN	TURE(S):			53 SAMPLI	NG 0907
PUMP OR DEPTH IN	TUBING WELL (feel):	7		TUBING / MATERIAL CODE:	PE		JCATE: Y (N)		
FIELD DEC	CONTAMINATIS	ON: PUI	up v (1	V) TUBI	NG Y (Nefectaced)	0.000			
SAM	PLE CONTAINS	ER SPECIFIC	ATION	5/	WIPLE TREATMENT		INTENCED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	# OONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	FIELD-FILTERED (Y or N) FILTER SIZE (µm)	AND	ANALYSIS AND/OR METHOD	CODE	FLOW RATE (I. per minute)
MID-5	4	V	40 ml	HCI	N		VOCs (8260B); TPHG (8015M)	PE, PP	0,1
MW-5	1	AG	1L	None	N		TPHd (8015M)	PE, PP	01
REMARKS	k.								
	L AND SAMPLI PP = Peristaltic			AG - Amber Goss Pump: B = Baller: O =		Polyette	ione; PP = Polypropyi	ene; S = Silicor	te; T = Teflon;
Stabilizati	ion Criteria: p	H: ± 0.1 S.U.	Tamparature	e ± 3% of reading (min	±0.2 °C) Specific Conducts	ince: ±3	%: Dissolved Oxygen: +	0.3 mg/L: ORP:	±10 mV

	42.85	0-6	_	SAMPLE	ene Int	W-6			DA	TE h	123/22	
WELL					PUR	GING DAT						
MAMETER	UNE PURGE:	TUBING DIANET	TER (Inches)	LL DEPTH -	(fibes) to	INTERVAL DEPT	TO MAT	DEPTH ER (bot): CAPACITY	1400 9,80	- DEP Pipeził	TH OF WELL (feel ルモラム	tac
GUIPMEN	f applicable) T VOLUME PC f applicable)	JRGE: 1 EQU	=(PUMP VOL	UME + (TUB	ING CAPACITY Iters/foot	X X TUBING LE	NGTH) + F	Moot =	L VOLUM	lors E L = liters	
VITIAL PUR JEPTH IN V	VELL (leet):	3 8	PINAL PUMP DEPTH IN W	OR TUBING	8	PURGING INITIATED /	diter -	Dune	and the local data		TOTAL VOLUME PURGED (liters):	7.2-
TIME	VOLUME PURGED (Bars)	PURGE	DEPTH TO WATER	TEMP. (^Q C)	pH (Mandard units)	EC (airole units) µmhos/om	TURBIDITY (FTUs)	DISSC OXY %		ORP	COLOR (describe)	ODOR (describe
E . 0		(Umin.)	(feet)			or aSicm		autur- ation	mg/L			
1507	0.3	011	6.13	$M.\mathcal{V}$	7.14	9.31	0.00	115	108	58	Thay	Nearl
60.9	06	0.1	6.16	17.4	7.18	2.34	0.00	5.9	0.55	58	clear	Non
908	0.9	0.)	6.19	17.2	7.17	9.36	0,80	5.3	0.41	99	me plack	-4
511	1.2	0.1	622	17.2	7.19	9.39	0.00	4.9	0.46	59	deus	Night
514	115	0.1	6.24	17.0	7.20	9.40	0.08	4.5	0. 42.	59	1.1	11
517	1.8	0.1	6.25	16.91	7.19	9.42-	9.00	4.4	0.41	59	12	11
520	2.1	0.1	4.26	16,9	7.19	9.48	().00	4.3	0,40	59	10	17
											-	

8AMPLED	POPTIN PRINTING	MOCK	WEST	SAMPLER(S) SIGN	TURE(S):	SAMPLING	2.2 SAMPLI	
PUMP OR DEPTH IN	TUDING WELL (feet):	0		TUBING MATERIAL CODE:		PLICATE: Y		
FIELD DEC	CONTAMINATE	ON. POI	WP Y ()	V) TUBI	NG Y (roplaced)			
SAM	PLE CONTAIN	ER SPECIFIC	ATION	84	MPLE TRRATMENT	INTENDED	SAMPLING	SAMPLE PUMP
SAMPLE ID CODE	CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	FIELD-FILTERED (Y or N) AND FILTER SIZE (um)	ANALYSIS AND/OR METHOD	EQUIPMENT CODE	FLOW RATE (L per minute)
MW-6	4	V	40 mi	HCI	N	VOCs (8260B); TPHG (8015M)	PE, PP	0.1
MW-6	1	AG	1L	None	N	TPHd (8015M)	PE, PP	0.1
REMARKS	\$.							
MATERIAL V = YOA;	AND SAMPLI PP = Peristatic	NG EQUIPMI Pump: SP =	NT CODES: Submensible	AG = Amber Glass, Pump; B = Baller; C =	CG = Clear Glass; PE = Polye Other (specify)	thylana; PP = Polypropyl	ene: 8 = Silicor	te: T = Tellion:
Stabilizati	on Crileria: p	H: ± 0,1 S.U.	Temperaturo	c ± 3% of reading (min	+0.2 °C): Specific Conductance: g	3% Dissolved Oxygen: ±	0.3 mg/L: ORP:	10 mV

NAME HAY	WARD PARK	GALTRAIN ST	PATION		ST LC	CATION: 401 C	ONCAR DRIVE	SAN MAT	EO, CA			
WELL NO	Mi	v-7		SAMPLE	in M	W-7	0.000.000.000.000	esserii wen	DA	TE 2/	23/22	
					and set of the set of the set of the set of the	GING DAT		-				
WELL DIAMETER	(inches): 2	DIAMET	ER (inches) ()			NTERVAL DEP	and the second second	DEPTH ER (Seal)	610		12,01 S	
WELL VOL	IME PURGE: fapplicable)	WELL VOL.	+ (TOTAL WE	LL DEPTH feet	STATIC DEP	TH TO WATER)	X WELL	CAPACITY			(Z. 01 6	ICh_
COUPMEN only fit out i	T VOLUME PU fanplicable)	RGE: 1 EQU	IPMENT VOL.		UME + (TUBI ms + (ING CAPACITY literefoot	X TUBING LE	NGTH) + F	LOW CEL	L VOLUME Sters	E =illers	8
NITIAL PUN DEPTH IN V	VP OR TUBING VELL (fool):	8	FINAL PUMP DEPTH IN W	OR TUBING	8	PURGING	AT 1407	PURG	ING DAT. /	125	TOTAL VOLUME PURCED (Ibers);	1.8
TIME	VOLUME	PURGE	DEPTH	TEMP.	pH	EC (circle units)	TURBIDITY	DISSO	LVED	ORP	COLOR	ODOR
TRUE	PURGED (iters)	RATE (Umin.)	(Teet)	(°¢)	(standard units)	umhos/cm	(FTUs)	% satur- ation	mg/L	(₩¥)	(describe)	(describe)
409	Ø.Z	0.1	6:17	15.7	6.73	9.94	0,00	7.4	0.68	59	clear	Norf
1412	0.5	0.1	6.18	16.4	6.69	9.73	0.00	6.3	0,97	55	11	21
14/5	0.8	0.1	6.18	16 7	6.61	9.57	0.00	5.6	0,50	56	1.3	D
418	1.1	0.1	6.19	16.5	6.60	9.59	0.00	49	0,\$5	57	and the second sec	ν
421	1.4	Ø./	6-18	16.4	6.60	7.61	0.00	5.0	0.45	58	> 11	n.
424	67	0.1	6.18	16.4	6.61	9.62	0.10	52	0.47	59	t).	Ð
_								-				
											-	
		1										
UBING INS	GITY (Liters P	er Foot: 0.75 ACITY (L./FL):	r = 0,08; 1" 1/8" = 0.002;	= 0.15; 1. 3/16" = 0.	26" = 0.23; 005; 1/4" :	2" = 0.61; 3 = 0.010; 5M6		= 2.5; 6" 8" = 0.023;		6° = 5.6; 0.038;	12" = 22.3 5/8" = 0.081	

SAMPLED	BY (PRINT) / A ficility	MO LK	WEST	SAVPLER(S) SIGN/	TURE(S):		BAMPLING INITIATED AT: 14		AT: 14.39
PUMP OR DEPTH IN	TUBING WELL (leel):		8	TUBING MATERIAL CODE:	PE		JCATE: Y (N) sate Sample ID:		
FIELD DEC	CONTAMINATIO	ON: PUR	WP Y (1	TUBI	NG Y (N(replaced))	10 0			
SAM	PLE CONTAINE	ER SPECIFIC	ATION	84	MPLE TREATMENT		INTENDED	SAMPLING	SAMPLE PUMP
BAMPLE ID CODE	A CONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	FIELD-FILTERED (Y or N) FILTER SIZE (um)	AND	ANALYSIS AND/OR METHOD	COOR	FLOW RATE (L per minute)
Mar 7	4	V	40 ml	HCI	N		VOCs (82608); TPHG (8015M)	PE, PP	0.1
MW-7	1	AG	11.	None	N		TPH6 (8015M)	PE, PP	0.)
REMARKS	5								
	AND SAMPLI PP - Peristaltic			AG = Amber Gless, Pump; B = Baller; O =		Polyethy	vieno; PP = Polypropyl	ene; S = Silicor	ne; T = Teiton;
Stabilizati	on Criteria: p	H: ±0.1 S.U.	Temperature	e: ± 3% of reading (min	• 0.2 °C). Specific Conducts	npe: +3	%: Dissolved Oxygen: ±	0.3 mg/L: ORP:;	±10 mV

SITE NAME: HAY	WARD PARK	CALTRAIN ST	ATION		SIT LO	CATION: 401 CO	NCAR DRIVE	SAN MATE	O, CA			
WELL NO:	MW-	8	et/	SAMPLE		MW-8			DAT	E 2	124/22	Saupling
						GING DAT			11/11	1.000		1
MELL NAMETER (Inchesi: 7	DIAMET	ER (inches): ()	25 WE	LLECREEN I	<u>12-</u> (tt bgs)	H. STATIC I TO WAT	DEPTH 4/. ER (leet):	4.92	2005	HOFWELL (Inc 11.9) UT	
	IME PURGR: applicable)	WELL VOL.	= (TOTAL WED = ()).9	L DEPTH - feet -	STATIC DEP	TH TO WATER)		CAPACITY	toot =	476	ana 13=12B	
	r VOLUME PU rapplicable)	RGE: 1 EQU	PMENT VOL. =	PUMP VOL	UME + (TUBI ns+(X TUBING LE	NGTH) + F	OW CEL	L VOLUME		
NITIAL PUN	IP OR TUBING	8	FINAL PUMP DEPTH IN W		-8	PURGING INITIATED A	r: 0938	PURG	NG IC	16	TOTAL VOLUME PURGED (illens)	12.8
	VOLUME	PURGE	DEPTH		pH	EC (circle units)	TURBIDITY	DISSO		ORP	COLOR	ODOR
TIME	PURGED (illers)	RATE (L/min.)	TD WATER (feel)	(°C)	(standard units)	junitosion <u>or jobicm</u>	(FTUs)	N sutur- etion	mg1.	(mV)	(describe)	(describa)
0940	0.2	0.1	5.25	14.8	7.76	9.93	11.52	4.0	0.74	-15	, (UES)	Идна
0943	0.5	0,1	5.48	15.9	7.69	9.70	19.67	6.0	0.55	-14	dear	Petrol
0946	0.8	0.1	5.65	16.3	7.52	9.40	6.64	4.8	0.45	-13	2 11	NONE
0949	20	0.4	5.8.6	16.4	9.47	9.32	5.11	4.4	0.41	-14	10	10
0952	3.2	0.4	611	16,6	7.39	9,23	4.00	4.2	0.39	-15	(<	15
0955	44	0.4	6.30	16.8	7.35	9,20	3,25	3.9	0,37	-14		39
0958	9.6	0,4	6.61	16.6	7.34	9.17	1.61	3.9	0.36	-12		<u>. 19</u>
001	68	0.4	6.76	16.8	7.32	9.20	2.22	3.8	0,36	-12	1/	- 11
1004	8.0	0.4	694	17.1	7.26	921	1.79	3.7	0.35	-11	<u>\$1</u>	3.2
1007	92	0,4	110	172	7,27	919	2.41	3.7	0.34	-10	1 11	4
010	10.4	04	7.25	17.1	7.26	9.10	1.99	3.7	0,54	~10	10	- 88
1010) () , (-) ACITY (Liters I SIDE DIA, CAP		7.25	17.1	.25" = 0.23	9.10	P=0.1.4; 4"		= 3.9;	~1() 6 [#] = 5.6; = 0.030;) (12" = 22.3 5/8" = 0.051	

SAMPLING DATA

PUMP OR TUBING DEPTH IN WELL (fee(): Y B TUBING MATERIAL CODE: P/L DUPLICATE: Y (N) Duplicate Sample ID: FIELD DECONTAMINATION: PUMP Y (N) TUBING Y (N (replaced)) IntenceD ANALYSIS AND/OR DCODE SAMPLE CONTAINER SPECIFICATION SAMPLE TREATMENT INTENCED ANALYSIS AND/OR NETHOD SAMPLING EQUIPMENT CODE SAMPLE W MATERNIL CODE VOLUME PRESERVATIVE USED FIELD-FRITERED (Y or N) AND FILTER SIZE (µm) INTENCED ANALYSIS AND/OR NETHOD SAMPLING EQUIPMENT CODE M/W-Ø 4 V 40 mil HCI N VOCs (8280B): TPHG (8015M) PE, PP M/W-Ø 1 AG 1L None N TPHd (8015M) PE, PP	SAMPLED	BY (PRINT) / A	FRILATION		SAMPLER(8) SIGNA	-111 -3		SAMPLING INITIATED AT: 10)	7 SAMPLE ENDED	
SAMPLE CONTAINER SPECIFICATION SAMPLE TREATMENT INTENDED ANALYSIS AND/OR FILTER SIZE (µm) INTENDED ANALYSIS AND/OR METHOD SAMPLING EQUIPMENT CODE SAMPLE W ID CODE WATERIAL CODE VOLUME PRESERVATIVE USED FIELD-FRITERED (Y or N) AND FILTER SIZE (µm) NETHOD EQUIPMENT CODE M[W-8] 4 V 40 mil HCI N VOCs (8260B): TPHG (8015M) PE, PP M[W-9] 1 AG 1L None N TPHd (8015M) PE, PP M[W-9] - - - - - - -		TUBING			TUBING					
SAUFLE CONTAINER SPECIFICATION PRESERVATIVE USED FIELD-FILTERED (Y or N) AND FILTER SIZE (µm) ANALYSIS AND/OR NETHOD EQUIPMENT CODE SAUFLE CONTAINERS VOLUME PRESERVATIVE USED FIELD-FILTERED (Y or N) AND FILTER SIZE (µm) ANALYSIS AND/OR NETHOD EQUIPMENT CODE M[W-8] 4 V 40 mil HCI N VOCs (8280B): TPHG (8015M) PE, PP M[W-9] 1 AG 1L None N TPHd (8015M) PE, PP M[W-9] - - - - - - -	FIELD DE	CONTAMINATIO	ON: PU	MP Y C	vi) ⊤UB≋	NG Y (replaced)			1	
SAMPLE # #ATTENUL ID CODE VOLUME PRESERVATIVE USED FIELD-PRITERED (Y or N) AND FILTER SIZE (µm) METHOD CODE M[U-8] 4 V 40 mi HCI N VOCs (8280B); TPHG (8015M) PE, PP M[U-9] 1 AG 1L None N TPHd (8015M) PE, PP M[U-9] 1 AG 1L None N TPHd (8015M) PE, PP	SAM	PLE CONTAINE	ER SPECIFIC	ATION	S/	WPLE TREATMENT				SAMPLE PUMP
MIW-8 4 V 40 ml HCI N VOCs (8280B); TPHG (8015M) PE, PP MIW-9 1 AG 1L None N TPHd (8015M) PE, PP		CONTRINERS		VOLUME			AND			(L per minute)
MW-0 1 AG 1L None N 11 11 11 10 10 10 10 10 10 10 10 10 10			the second local day in the local day is a second s	40 ml	the second se					0.1
	MW-9	1	AG	1L	None	N		TPHd (8015M)	PE, PP	Ø.1
Swatte out wellicap	REMARK		of well	raD						
MATERIAL AND SAMPLINE EQUIPMENT CODES: AG = Amber Glass; CG = Diear Glass; PE = Polyectytene; PP = Polyectytene; S = Sature sible Pump; B = Baller; C = Other (specify)	MATERIA	1 AND SAMPLI	NC EQUIPM	ENT CODES:	AG = Amber Glass Pump: B = Baller: O =		 Polyethy 	ytene; PP = Polypeopy	ana; 3≂Slico	ne; T = Tellon;
Stebilization Criteria: pH: + 0.1 S.U. Temperatura: ± 3% of reading (min ± 0.2 °C): Specific Conductance: ± 3%: Diasolvad Oxygen: ± 0.3 mpL: ORP -	1						moe: ± 2	Ph: Dissolved Oxygen:)	0.3 mpl.: ORP	±10 giV

P.lofz

SITE NAME: HA	YWARD PARK	CALTRAIN ST	TATION		SIL	E CATION: 401 C	ONCAR DRIVE,	SAN MATE	EO, CA			
WELL NO:	M	W-8	40.05599	SAMPLE	ε iD: μ/	w-8			DAT	ne 2/	24/22	
					PUR	GING DAT	A					
WELL DIAMETER			ER (inches).	25 3	左 (fitioge) io		TO WAT	DEPTH Y ER (feet):	4.92.	E DEP	TH OF WELL (160 71.91 655	
(anly fill out	if applicable)		-()_1	foet -	4.17	TH TO WATER)	x	the second s	= toofl	and the second second second second	tans $k = j_{Z}$,8
	IT VOLUME PL If applicable)	JRGE: 1 EQU	IPMENT VOL.		JUME + (TUB) HS+(Iters/loct	X TUBINGLE X	hG(TH) + Fi feat) +	LOW CEL		E s = litere	
	MP OR TUBING WELL (loot):	8	FINAL PUMP DEPTH IN W		40	PURGING INITIATED A	m 0958	PURG	ING DAT: (0)6	TOTAL VOLUM PURGED (liters)	12.8
10101012001	VOLUME	PURGE	DEPTH	TEMP.	pН	EC (circle units)	TURBIDITY	DISSO OXY		ORP	COLOR	COOR
TIME	PURGED (Ittens)	RATE (Umin.)	WATER (feet)	(⁰ C)	(standard units)	jumhos/cm gr grSvcm	(PTUs)	% solun ation	mg/L.	(mV)	(describe)	(describe)
1013	11.6	0.4	7.39	17.)	7.25	9.19	2.08	3.7	0.34	-9	clear	Psho/
1016	12.8	0,4	7,50	17.0	7.24	9,14	1.67	3.7	0.34	-9	if .	32
104%			6.50									
						_						
				_								
		2										
											_	
WELL CAR	ACITY (Liters)	Per Footy 0.7	5" = 0.00; 1" 1: 1/8" = 0.002;	= 0.15; 1	1.25" = 0.23;			= 2.5; ff 8" = 0.023;	" = 3.9; 1/2"	8" = 5.5; = 0.038;	12" = 22.3 6/8" - 0.061	

SAMPLED	BY (PRINT) /A	1 C C C C C C C C C C C C C C C C C C C	WEST	SAMPLER(S) SIGNA	TURE(S):		SAMPLING	7 SAMPLE	
PUMP OR DEPTH IN	and a state of the	40		TUBING MATERIAL CODE:	PE		ICATE Y (N) sate Sample IC		
FIELD DEG	CONTAMINATIO	ON: POW	PYD	TUBI	NG Y (N (replaced))	3.—)G	1.000		
SAM	PLE CONTAINE	ER BRECIFIC	ATION	3/	MPLE TREATMENT		INTENDED	SAMPLING	SAMPLE PUMP
SANPLE ID CODE	OONTAINERS	MATERIAL CODE	VOLUME	PRESERVATIVE USED	FIELD-FILTERED (Y or N) FILTER SIZE (pm)	AND	ANALYSIS AND/OR METHOD	CODE	FLOW RATE {L par minute}
MWR	4	V	40 ml	HCI	N		VOCs (8260B); TPHG (8015M)	PE, PP	01
MW-8	1	AG	1L	None	N		TPHd (8015M)	PE, PP	0.5
1 1						19-11			
REMARKS	記 二単地称 れ	ew cap							
	PP = Peristallic			AG = Amber Glass Pump, B = Sailer, O =		: Polyeiky	ylene, PP = Polypropyl	ene; S = Silico	ne; T=Teflon;
Stabilizat	ion Coteria; p	Ht ± 0,1 S.U.	Temperatur	e: ± 3% of reading (min	±0.2 °C): Specific Conducts	ince: ±2	55: Dissolved Oxygen: +	0.3 mg C ORP:	±10 mV

		-9		SAMPLE	iDc	Mu	1-9 \$0	100-	Little nur	~ 16	4/226	server an ma
					and the second se	GING DAT			abar.			
WELL DIAMETER (inchesi: Z	DIAMET	; TER (inches):_(),	15 19		ITERVAL DEPT	H: STATIC I TO WAT	DEPTH '7' ER (leet)	5.216	TOL	9.91 670	Č
wELL VOLU		WELL VOL	= (TOTAL WEI = {	L DEPTH - S	STATIC DEP	feel)	X WELL	CAPACITY	= tooh	18a	irs.	
OUIPMENT only fill out i	VOLUME PUI applicable)	NGE: 1 EQU	IPMENT VOL. =	PUMP VOL	UME + (TUBI) s + (IG CAPACITY	X TUBING LÉ	NGTH) + F feel) *			= liters	
NITIAL PUN DEPTH IN V	P OR TUBING	7	FINAL PUMP DEPTH IN W		7	PURGING INITIATED A	r: 1158	PURG	ING DAT: /	224	TOTAL VOLUME PURGED (Hers)	26
	VOLUME	PURGE	DEPTH	TEMP.	pH	EC (circle units)	TURBIDITY	DISSO		ORP	COLOR	ODOR
TIME	PURGED (iters)	RATE (L/min.)	WATER (Feat)	(°C)	(standard units)	jimhosicm or uSicm	(FTUs)	% satur- atton	Jem	(Vin)	(desonbe)	(describe)
201	0,3	0.1	5.48	15.3	7.21	9.65	0.70	10.7	102	-79	dear	Altro
1204	0,6	0.)	5.50	15.7	7.19	9.5%	1.10	5.5	0.53	-85	clear	tt.
1207	0.9	0.1	5,53	15.9	7.16	9.50	1.05	4.5	0.43	-90	15	11
1210	1.2	0.1	5.57	16.2	7.16	9.41	0.50	9.9	0.41	-90		- 11
1213	1.5	0.1	5.60	166	214	9.39	0.54	41	0,39	-91.	1	21
1216	1.8	0.1	5.62	16.7	7.12	9.38	0.60	40	0.32	-93	1	11
1219	2.1	0.1	5,64	16.6	7.12	9.36	0.42	3.9	0,37	-95	4	11
1222	2.4	0.1	5.65	16.7	7.11	9.36	0.71	39	0.37	-95	11	11
							1	-	-		-	

n Mocf 7		TUBING			SAMPLING INITIATED AT: 122-5 ENDED AT: 124		
		MATERIAL CODE:	1E	DUPUCATE: (Y) N Dubleste Sample ID: 0	22.4 22-Min)	
: PUMP	Y ()	у) тиві	NG Y (N(replaced).)				
SPECIFICAT	NON	5/	WPLE TREATMENT	INTENDED	SAMPLING	SAMPLE PUMP	
MATERIAL CODE	VOLUME	PRESERVATIVE	FIELD-FILTERED (Y or N) / FILTER SIZE (um)	ANALYSIS AND/OH METHOD	CODE	FLOW RATE (L per minute)	
v	40 ml	HCI	N	VOCs (8260B); TPHG (8015M)	PE, PP	0.1	
AG	1L	None	Ň	TPHd (8015M)	PE, PP	0.)	
V	40 <i>al</i> -	11-01	N	VO& Anthy	PE, PP	0.1	
e				1			
GEQUIPMEN	T CODES:	AG = Amber Glass Pump; B = Baller: O =		Polyethylene; PP = Polypra	pylene, 19 = Silico	ne; T = Teflon;	
	AG CODE V AG V C C C C C C C C C C C C C	CODE VOLUME V 40 ml AG 1L V 40 ml V 90 ml	INTERVAL CODE VOLUME PRESERVATIVE USED V 40 ml HCI AG 1L None V 40 ml HCI AG 1L None V 40 ml HCI EQUIPMENT CODES: AG = Amber Glass unp; SP = Submanible Pump;	INTERVAL CODE VOLUME PRESERVATIVE USED PIELD-FILTERED (Y or N) / PIETER SIZE (um) V 40 ml HCI N AG 1L None N V 40 ml HCI N V 90 mL	IATERQU CODE VOLUME PRESERVATIVE USED PIELD-FILTERED (Y or N) AND PIETER SIZE (um) ANALYSIS AND/OR METHOD V 40 ml HCI N VOCs (82608); TPHG (8015M) AG 1L None N TPHG (8015M) V 40 ml HCI N VOCs (82608); TPHG (8015M) V 40 ml HCI N VOCs (82608); V 40 ml HCI N VOCs (82608); V 40 ml HCI N VOCs (82609); V 40 mL HCI N VOCs (82608); V 40 mL HCI N VOCs (82609); V 40 mL HCI N VOCs (82609; V 40 mL HCI N VOCs (82609; V 40 mL HCI N VOCs (40 Hg) V 40 mL HCI N VOCs (40 Hg) V 40 mL HCI N VOCs (40 Hg) EQUIPMENT CODES: AG = Amber Glass; CB = Clea	WATERIAL CODE VOLUME PRESERVATIVE USED FIELD-FILTERED (V or N) AND PILTER SIZE (um) ANALYSIS AND/OR METHOD EQUIPMENT CODE V 40 ml HCI N VOCs (8260B); TPHG (8015M) PE, PP AG 1L None N TPHd (8015M) PE, PP V 40 ml HCI N VOCs (8260B); TPHG (8015M) PE, PP V 40 mL HCI N VOCs (8260B); TPHG (8015M) PE, PP V 40 mL None N TPHd (8015M) PE, PP V 40 mL HCI N VOCs (8260B); TPHG (8015M) PE, PP V 40 mL HCI N VOCs (8260B); PE, PP V 40 mL HCI N VOCs (8260B); PE, PP V 40 mL HCI N VOCs (926 ML/Hg) PE, PP V 40 mL HCI N VOCs (926 ML/Hg) PE, PP EBOLIPMENT CODES; AG = Amber Glass; CG = Clear Glass; PE = Polyethylens; PP = Polypropriane;	

ſ

SHEET 1 OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-28-4 and 022522-4

PROJ	ECT NAME: Regis.Hayward Park Station		
	OCATION: 401 Concar Drive, San Mateo, CA	,	
	WEATHER: 55°, Summy	· · · · · · · · · · · · · · · · · · ·	
	DATE: 2/25/22		/ 1 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2 / 2
SA	AMPLED BY: AK		· ·
A	WELL TYPE: Temporary		
			·····
	VAPOR PROBE SAMPLE DEPTH (FT):	4	
SAMPLE DATA	SUMMA CANISTER ID:	S-141 and Ics	-140 2/16/27
	FLOW CONTROLLER SERIAL NO .:	658 and .	214
	<u>, , , , , , , , , , , , , , , , , , , </u>	<u>.</u>	
	BORING/WELL DIAMETER (INCH):	2.25	······································
	DRY BENTONITE INTERVAL (FT):	1	
	SAND PACK INTERVAL (FT):	1.5	· · · · · · · · · · · · · · · · · · ·
	TUBING TYPE:	Teflon	1000 farmer (1000 farmer)
PURGE VOLUME	TUBING LENGTH (FT):	7	· · · · · · · · · · · · · · · · · · ·
	TUBING ID (INCH):	0.17	
on LOOL ANON	PURGE VOLUME (CC):	417	··
	PURGE RATE (CC/MIN):	125	
	PURGE WELL VOLUMES	1	3
	PURGE TIME (MIN):	3.34	10.02
	PURGE TIME (SEC):	200	601
······			
· ·	VACUUM HOLD TEST START TIME (24 HR):	1021	
SHUT IN/	VACUUM HOLD TEST END TIME (24 HR):	1031	
10-MINUTE	VACUUM HOLD TEST DURATION (MIN):	10	
VACUUM TEST	INITIAL CANISTER VACUUM (IN. Hg)	Gauge1: 6	Gauge2: 46 5
	FINAL CANISTER VACUUM (IN. Hg):	Gauge1: 6	Gauge2: 6 15
	1		
	MEASUREMENTS WITHIN SHROUD	TIME	HELIUM
		(24 HR)	(%)
	PRIOR TO PURGE	1031	23.0
PURGE AND SAMPLE TRAIN LEAK TEST	DURING PURGE	1034	21,4
	POST PURGE	1041	22,7
	MEASUREMENTS FROM SAMPLING TRAIN	TIME HELIUM	PID
		(24 HR) (%)	(PPMV) G (U) Use 1L
	START	1031 0.0	6.4 Use IL tedlar bag
	1 WELL VOLUME	1034 0.1	0.4 technic bag
	3 WELL VOLUMES	1041 0.1	0.5

61=0 62=-1

SHEET 1 OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: _____ Quel 022522-4

PROJECT NAME		Regis.Hay						
PROJECT LOCA			r Drive, Sar	n Mateo, CA			·	
DATE:	2/2	5/22						
	!	TIME	HELIUM	VACUUM	TIME	HELIUM	VACUUM	
		(MINS)	(%)	(IN. Hg)	(MINS)	(%)	(IN. Hg)	
		1	(10)	(12		12	
		2	22,4	26	13	<u> </u>	1 6000	
	APPLY	3				21.2	9.5	
÷	TRACER GAS	4	23.0	23	15		1 P	
	WITHIN	5			16	22.0	7	
SAMPLE	THE		21.1	20	17			
COLLECTION	SHROUD	7			18			
AND TRACER		8	22.2	17.5	19			
GAS MONITORING		9			20			
MONTONING			20.5	15	21	·····	,n	
	·	11			22			
				NED (24 HR)	(04)	0 0		
	_			SED (24 HR)	19	011	8	
	INI			IME (MINS): JUM (IN. Hg)	29			
		Volume -	The second se	JRE (IN. Hg):	- 27 - N			
				Hg on openin	in: Close ca	nistor at 5"	На	
				<u> </u>	<u>.</u>			
INTRINSIC PERMEABILITY TESTING		Depth (ft)		Gauge Flow		Air Flow		
	TEST THRU				TEST 1	TEST 2	TEST 3	TEST 4
					i			
					1.5	5	4.5	
		FL	OW METE	R READING	1.5 20	25	9.5 30	
		FL	OW METE			325		

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-21-4

PROJ	ECT NAME: Regis.Hayward Park Station				
	OCATION: 401 Concar Drive, San Mateo, CA				
	WEATHER: 55°, Gumy				
	DATE: 2/29/22				
SA	MPLED BY: AK	···			
<u> </u>	VELL TYPE: Temporary		· · ···		
				<u> </u>	
	VAPOR PROBE SAMPLE DEPTH (FT):	4			
SAMPLE DATA	SUMMA CANISTER ID:	J-CS-	866	2/17/	72
	FLOW CONTROLLER SERIAL NO .:		01		
		<u> </u>	<u>v j</u>		
	BORING/WELL DIAMETER (INCH):	2.25			
	DRY BENTONITE INTERVAL (FT):	1			
	SAND PACK INTERVAL (FT):	1.5	****		
	TUBING TYPE:	Teflon			
	TUBING LENGTH (FT):	7			
PURGE VOLUME CALCULATION	TUBING ID (INCH):	0.17			
O/ LEGGE/ MICH	PURGE VOLUME (CC):	417			
	PURGE RATE (CC/MIN):	125			
	PURGE WELL VOLUMES		1	3	}
	PURGE TIME (MIN):	3.	34	10.	02
	PURGE TIME (SEC):	2	00	60)1
	VACUUM HOLD TEST START TIME (24 HR):		0924		
SHUT IN/	VACUUM HOLD TEST END TIME (24 HR):		0934		
10-MINUTE	VACUUM HOLD TEST DURATION (MIN):		10		
VACUUM TEST	INITIAL CANISTER VACUUM (IN. Hg)	Gauge1:	15	Gauge2:	15
	FINAL CANISTER VACUUM (IN. Hg):	Gauge1:	5	Gauge2:	15
	MEASUREMENTS WITHIN SHROUD	TI	ИE	HEL	IUM
		(24	HR)	(%	6)
	PRIOR TO PURGE	093		23	,0
	DURING PURGE	093	7	20.	
PURGE AND SAMPLE TRAIN	POST PURGE	Oqy	ч	21.4	
LEAK TEST	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID	
		(24 HR)	(%)	(PPMV)	Lico 11
	START	0934	0.0	0.6	Use 1L tedlar bag
	1 WELL VOLUME	0937	6.0	0.7	wana bag
	3 WELL VOLUMES	0944	0.0	0.9	

61=2 62=2

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-29-4

PROJECT LOCA			vard Park S						
	TION:			Mateo, CA					
DATE:		2/25/22	-						
		TIME	HELIUM	VACUUM	TIME	HELIUM	VACUUM		
	1.4 Million	(MINS)	(%)	(IN. Hg)	(MINS)	(%)	(IN. Hg)		
		1		(111, 119)	12	23.0	Q		
		2	23,0	24	13	0.10	્ય		
	APPLY	3			10	22.5	8		
	TRACER	4	ZZ.9	20	15	<u> </u>	0	5	
	GAS	5			16	20.3	6.5		
SAMPLE COLLECTION AND TRACER	WITHIN THE	6	20.1	17	17				
	SHROUD	7			18	21.4	5.5		
		8	21.0	14	19				
GAS		9		•••	20				
MONITORING		10	22.7	12	21				
		11			22				
		TIME CANIS	STER OPEN	NED (24 HR)	690	14			
	TIME CANISTER CLOSED (24 HR)								
		TOTAL	SAMPLE T	IME (MINS):	10	6			
		INITIAL CANISTER VACUUM (IN. Hg)							
				RE (IN. Hg):	5				
	Note: Do not	t use if vacu	um is <29"	Hg on openin	g; Close ca	nister at 5"	Hg		
INTRINSIC		Depth		Gauge Flow	Meter Pump	Air Flow			
INTRINSIC PËRMEABILITY TESTING	TEST THRU	(ft) I WELL TUE	VACUUM (OW METE	Gauge	Pump	Air Flow	TEST 3	TEST 4	
PERMEABILITY	TEST THRU	(ft) I WELL TUE	VACUUM (OW METE FLOW RAT	Gauge	robe (in.) TEST 1 7100			TEST 4	

SOIL VAPOR SAMPLING LOG, SAMPLE ID: $\frac{W-3o-9}{W-3o-9}$

PRO.	ECT NAME: Regis. Hayward Park Station		<u>-</u>			
	LOCATION: 401 Concar Drive, San Mateo, CA					
	WEATHER: 50, Summy			· · · · · · · · · · · · · · · · · · ·		
· · · · · · · · · · · · · · · · · · ·	DATE: 2/25/22					
S	AMPLED BY: AK	·		······		
1	WELL TYPE: Temporary					
			••• • ••• •••	····		
	VAPOR PROBE SAMPLE DEPTH (FT):	4				
SAMPLE DATA	SUMMA CANISTER ID:	ICS-	315	2/17/2	2	
	FLOW CONTROLLER SERIAL NO.:	31				
	BORING/WELL DIAMETER (INCH):	2.25				
	DRY BENTONITE INTERVAL (FT):	1				
	SAND PACK INTERVAL (FT):	1.5				
	TUBING TYPE:	Teflon				
PURGE VOLUME	TUBING LENGTH (FT):	7				
CALCULATION	TUBING ID (INCH):	0.17				
	PURGE VOLUME (CC):	417				
	PURGE RATE (CC/MIN):	125				
	PURGE WELL VOLUMES	1 3			3	
	PURGE TIME (MIN):	3.	34	10.02		
	PURGE TIME (SEC):	2	00	6	501	
				~		
	VACUUM HOLD TEST START TIME (24 HR):		083	3		
SHUT IN/	VACUUM HOLD TEST END TIME (24 HR):	0843				
	VACUUM HOLD TEST DURATION (MIN):		[0]			
VACUUM TEST	INITIAL CANISTER VACUUM (IN. Hg)	Gauge1:	15	Gauge2:)5	
<u></u>	FINAL CANISTER VACUUM (IN. Hg):	Gauge1:	15	Gauge2:	15	
	MEASUREMENTS WITHIN SHROUD				LIUM	
		(24	HR)		%)	
	PRIOR TO PURGE	6843		23.0		
PURGE AND		0846		21.9		
SAMPLE TRAIN	POST PURGE	0853		22,7	• T	
LEAK TEST	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
		(24 HR)	(%)	(PPMV)	Use 1L	
	START	0843	0. <u>7</u>	0.7	tedlar bag	
		0946	0.7	0.6		
	3 WELL VOLUMES	0953	0.1	0.6.		

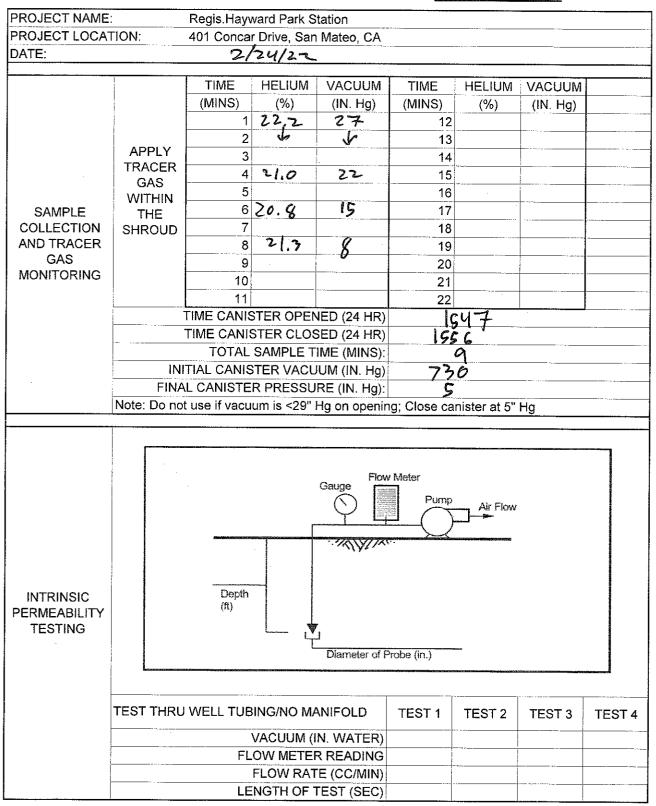
GK-1 G2--1

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-30-4

PROJECT LOCA		- F	vard Park S						
			Drive, San	Mateo, CA					
DATE:		2/29/22							
	1	TIME			718.45	1.1077.11.13.4	1401114	1	
		(MINS)	HELIUM			HELIUM			
		(iviii\\3) 1	(%)	(IN. Hg)	(MINS)	(%)	(IN. Hg)		
		2	22.5		12				
	APPLY	3		2	13 14				
	TRACER	4	21.3	15	15				
	GAS	5	07	······································	16				
SAMPLE	WITHIN	6	22.1	11	10				
COLLECTION	THE SHROUD	7			18				
AND TRACER		8	2016	6	19				
GAS		9			20				
MONITORING		10			21				
		11			22		1		
		TIME CANIS	STER OPEN	NED (24 HR)	05	57			
		TIME CANIS	STER CLOS	SED (24 HR)	091				
	TOTAL SAMPLE TIME (MINS):								
	INITIAL CANISTER VACUUM (IN. Hg) 2.9								
				RE (IN. Hg):	5				
	Note: Do no	t use if vacu	um is <29" .	Ha on onenin	a. Class as	mintar of Ell	11		
NEXT - 10.5 - 10.00		· ·				nister at 5	<u></u>		
				Gauge Flow	Meter	Air Flow			
INTRINSIC PERMEABILITY TESTING		Depth (ft)		Flow	Meter Pump				
PERMEABILITY		Depth (ft) WELL TUB		Gauge Flow Diameter of P	Meter Pump	Air Flow	TEST 3	TEST 4	
PERMEABILITY		Depth (ft) WELL TUB		Gauge Gauge Diameter of P ANIFOLD IN. WATER)	Meter Pump robe (in.) TEST 1	Air Flow	TEST 3	TEST 4	
PERMEABILITY		Depth (ft) WELL TUB		Gauge Gauge Diameter of P ANIFOLD IN. WATER) R READING	Meter Pump	Air Flow	TEST 3	TEST 4	
PERMEABILITY		Depth (ft) WELL TUB		Gauge Gauge Diameter of P ANIFOLD IN. WATER)	Meter Pump robe (in.) TEST 1	Air Flow	TEST 3	TEST 4	

SOIL VAPOR SAMPLING LOG, SAMPLE ID: $\frac{W-32-4}{2}$

PROJ	ECT NAME:	Regis.Hayward Park Station					
······		401 Concar Drive, San Mateo,	CA				
	WEATHER:	1			······································		
	DATE:	2/24/22					
SA	AMPLED BY:	AK					
	NELL TYPE:						
		lonporary		····			
	VAPOR PRO	OBE SAMPLE DEPTH (FT):		4			
SAMPLE DATA	SUMMA CA	NISTER ID:		TCS	-849	2/171	27
	FLOW CON	TROLLER SERIAL NO.:		- 	738		
······································				,	/ • •		
	BORING/WE	ELL DIAMETER (INCH):		2.25			
	DRY BENTO	ONITE INTERVAL (FT):		1			
	SAND PACK	(INTERVAL (FT):		1.5	· ·		······································
	TUBING TYI			Teflon			
PURGE VOLUME	TUBING LEI	NGTH (FT):		7			
	TUBING ID ((INCH):		0.17			
	PURGE VOL	LUME (CC):		417			
	PURGE RAT	FE (CC/MIN):		125		·····	
	PURGE WE	LL VOLUMES		1 3			
	PURGE TIM	E (MIN):		3.	.34	10.02	
	PURGE TIM	E (SEC):		2	00	61	01
						······································	
	VACUUM HO	OLD TEST START TIME (24 HI	R):)	527		
SHUT IN/	VACUUM HO	OLD TEST END TIME (24 HR):			1537		
10-MINUTE	VACUUM HO	OLD TEST DURATION (MIN):			10		·····
VACUUM TEST	INITIAL CAN	IISTER VACUUM (IN. Hg)		Gauge1:	20	Gauge2:	16
	FINAL CANI	STER VACUUM (IN. Hg):		Gauge1:	20	Gauge2:	16
	MEASU	REMENTS WITHIN SHROUD		TI	ИE	HEL	IUM
				(24	HR)	(%	6)
		PRIOR TO PUP	RGE	153	17	21	
PURGE AND		DURING PUP	RGE	154	0	22	
SAMPLE TRAIN		POST PUF	RGE	154	7	21.	7_
LEAK TEST	MEASUREN	MENTS FROM SAMPLING TRA		TIME	HELIUM	PID	
-				(24 HR)	(%)	(PPMV)	TT *T
· .		ST	ART	1537	0.1	2,3	Use 1L tedlar bag
		1 WELL VOLU	JME	1540	0.1	3.8	wurar bag
		3 WELL VOLUN	ЛES	1547	0.1	3.9	


61=8 6220

V

SHEET 1 OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID:

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W - 34 - 4

PROI	ECT NAME: Regis.Hayward Park Station						
	OCATION: 401 Concar Drive, San Mateo, CA						
	WEATHER: 54°, Gunay	· · · · ·					
	DATE: 2/24/22						
	AMPLED BY: AK						
<u>_</u>	NELL TYPE: Temporary						
	VAPOR PROBE SAMPLE DEPTH (FT):						
SAMPLE DATA	SUMMA CANISTER ID:	4					
	FLOW CONTROLLER SERIAL NO.:	ICS-	723	2/17/2	2		
	TEOW CONTROLLER SERIAL NO			.1			
· · · · · · · · · · · · · · · · · · ·	BORING/WELL DIAMETER (INCH):	2.25					
	DRY BENTONITE INTERVAL (FT):	1			-^		
	SAND PACK INTERVAL (FT):	1.5					
	TUBING TYPE:	Teflon		· · · · · · · · · · · · · · · · · · ·			
		7					
PURGE VOLUME	TUBING ID (INCH):	0.17					
CALCULATION	PURGE VOLUME (CC):	417					
	PURGE RATE (CC/MIN):	125					
	PURGE WELL VOLUMES	1 3			3		
	PURGE TIME (MIN):	3	.34	10.02			
- 	PURGE TIME (SEC):	2	00		01		
	Lesson and the second						
······································	VACUUM HOLD TEST START TIME (24 HR):		10554				
SHUT IN/	VACUUM HOLD TEST END TIME (24 HR):		1605				
10-MINUTE	VACUUM HOLD TEST DURATION (MIN):		10				
VACUUM TEST	INITIAL CANISTER VACUUM (IN. Hg)	Gauge1:	15	Gauge2:	16		
	FINAL CANISTER VACUUM (IN. Hg):	Gauge1:	15	Gauge2:			
		· · · · · · · · · · · · · · · · · · ·		<u> </u>	·		
	MEASUREMENTS WITHIN SHROUD	TII	ME	HEL	JUM		
		(24	HR)	. (9	%)		
	PRIOR TO PURGE	1109		21			
PURGE AND	DURING PURGE	1108			.2		
SAMPLE TRAIN	POST PURGE	11 15		2	0.7		
LEAK TEST	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID			
		(24 HR)	(%)	(PPMV)	11 17		
	START	1105	0.0	3.3	Use 1L tedlar bag		
	1 WELL VOLUME	1108	0.0	3.7	acuiai Dag		
	3 WELL VOLUMES	11.15	0.4	1.2			

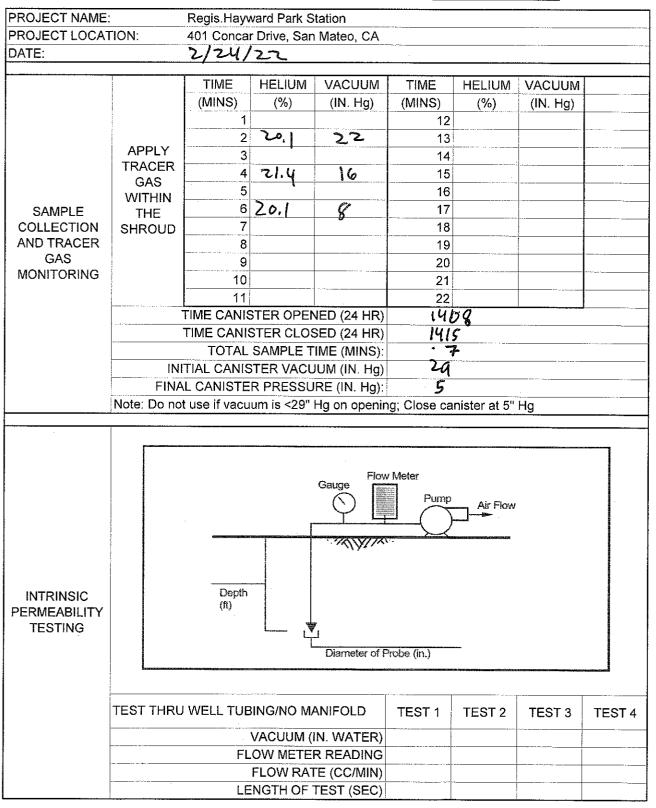
6-120

6-2=0

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-34-4

PROJECT NAME:	:	Regis.Hayward Park Station								
PROJECT LOCAT		401 Concar								
DATE:		2/24/22						,		
		TIME	HELIUM	VACUUM	TIME	HELIUM	VACUUM			
		(MINS)	(%)	(IN. Hg)	(MINS)	(%)	(IN. Hg)			
		1			12	22.9	21			
		2	20.0	29	13					
	APPLY	3	っ		14	20.1	21			
	TRACER GAS	4	21.3	25	15			· ·		
	WITHIN	5	-		16					
SAMPLE	THE	6	2013	23	17					
COLLECTION	SHROUD	7			18					
AND TRACER		8	20.7	22	19					
GAS		9	•		20	21.0	21			
MONITORING		10	21.6	22	21					
		11			22			~		
				NED (24 HR)		5				
				SED (24 HR)		00				
			SAMPLE T	10						
	INI	TIAL CANIS								
				JOW (IN LIG/	84×7	190				
	EINA	I CANISTEI			<u>₩ >30</u>					
				IRE (IN. Hg):	16		На			
· · · · · · · · · · · · · · · · · · ·				IRE (IN. Hg): Hg on openin	16		Hg			
INTRINSIC PERMEABILITY TESTING				Hg on openin	g; Close ca Meter					
		Depth (ft)	um is <29"	Hg on openin Gauge Flow	g; Close ca	nister at 5"		TEST 4		

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-35-4


PROJ	ECT NAME: Regis.Hayward Park Station	·				
	OCATION: 401 Concar Drive, San Mateo, CA					
· · · · · · · · · · · · · · · · · · ·	WEATHER: 55°, Sumy					
	DATE: 2/24/22					
SA	AMPLED BY: AK			·		
1	NELL TYPE: Temporary					
	VAPOR PROBE SAMPLE DEPTH (FT):	4				
SAMPLE DATA	SUMMA CANISTER ID:	ICS.	-187	2/17/	22	
	FLOW CONTROLLER SERIAL NO .:	65	6	2/17/		
	BORING/WELL DIAMETER (INCH):	2.25				
	DRY BENTONITE INTERVAL (FT):	1				
	SAND PACK INTERVAL (FT):	1.5				
	TUBING TYPE:	Teflon				
PURGE VOLUME	TUBING LENGTH (FT):	7				
CALCULATION	TUBING ID (INCH):	0.17				
	PURGE VOLUME (CC):	417				
	PURGE RATE (CC/MIN):	125				
	PURGE WELL VOLUMES	1		3		
	PURGE TIME (MIN):	· · · · · · · · · · · · · · · · · · ·	34	10.02		
	PURGE TIME (SEC):	2	00	60)1	
	VACUUM HOLD TEST START TIME (24 HR):	12	1411			
SHUT IN/	VACUUM HOLD TEST END TIME (24 HR):	1348				
10-MINUTE	VACUUM HOLD TEST DURATION (MIN):		5 <i>70</i> 1	· · · ·		
VACUUM TEST	INITIAL CANISTER VACUUM (IN. Hg)	Gauge1:		Gauge2:	19	
	FINAL CANISTER VACUUM (IN. Hg):	Gauge1:		Gauge2:	19	
				ouuge2.		
		TIN	ΛE	HEL	IUM	
	MEASUREMENTS WITHIN SHROUD	(24	HR)	(%	b)	
	PRIOR TO PURGE	1356		22.3		
	DURING PURGE	1401		20,4	1	
PURGE AND SAMPLE TRAIN	POST PURGE	1408		21.1	1	
LEAK TEST	MEASUREMENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
		(24 HR)	(%)	(PPMV)	T T 4¥	
	START	1358	0.0	1.7-	Use 1L tedlar bag	
	1 WELL VOLUME		0.0	1.7	teurar bag	
	3 WELL VOLUMES	1408	0+0	0.9		

G1 26

62-1

SOIL VAPOR SAMPLING LOG, SAMPLE ID: W-35-4

1

SHEET 1 OF 2

SOIL VAPOR SAMPLING LOG, SAMPLE ID:

PROJ	ECT NAME: Regis.Hayward Park S	tation					
· · · · · · · · · · · · · · · · · · ·	OCATION: 401 Concar Drive, San						
·	WEATHER: 55°, the Sum 1						
· · · · · · · · · · · · · · · · · · ·	DATE: 2/24/22	<u></u>					
S	MPLED BY: AK						
	VELL TYPE: Temporary						
				···· ··· ··			
	VAPOR PROBE SAMPLE DEPTH	(FT):	\$. 2.5				
SAMPLE DATA	SUMMA CANISTER ID:	ICS-105 2/17/22					
	FLOW CONTROLLER SERIAL NO	.:	668				
			<u> </u>	•			
	BORING/WELL DIAMETER (INCH)	•	2.25				
	DRY BENTONITE INTERVAL (FT):	-	1				
	SAND PACK INTERVAL (FT):		1.5-				
	TUBING TYPE:		Teflon				
PURGE VOLUME	TUBING LENGTH (FT):		7				
CALCULATION	TUBING ID (INCH):		0.17				
CALCULATION	PURGE VOLUME (CC):	417					
	PURGE RATE (CC/MIN):		125				
	PURGE WELL VOLUMES	1 3					
	PURGE TIME (MIN):		3.34		10.02		
·	PURGE TIME (SEC):		20	00	60)1	
	VACUUM HOLD TEST START TIM			1433			
SHUT IN/	VACUUM HOLD TEST END TIME (1443				
10-MINUTE	VACUUM HOLD TEST DURATION	. ,		10			
VACUUM TEST	INITIAL CANISTER VACUUM (IN. H	÷.	Gauge1:	15	Gauge2:	15	
	FINAL CANISTER VACUUM (IN. H	g):	Gauge1:	15	Gauge2:	15	
				A177			
	MEASUREMENTS WITHIN SH	IROUD		HR)	HEL		
	PRIOR	TO PURGE		•	(%) 20		
		NG PURGE	<u> </u>	2 17	22		
PURGE AND		ST PURGE	149	2	21,		
			TIME	HELIUM	PID	<i>V</i>	
LEAK TEST	MEASUREMENTS FROM SAMPL	NG TRAIN	(24 HR)	(%)	(PPMV)		
		START	(24111)	0.0	(PPINIV) 1.7	Use 1L	
	1 W/FI	L VOLUME	1446		1.4	tedlar bag	
	······································	VOLUMES	1493	0.0 6.0	1.3		
			1 . / >	910			

61=0

6220

SOIL VAPOR SAMPLING LOG, SAMPLE ID:

	•		vard Park S					
PROJECT LOCA			Drive, San	Mateo, CA				
DATE:	てん	1/22						
· · · · · · · · · · · · · · · · · · ·	!	TIME	HELIUM	VACUUM	TIME	HELIUM	VACUUM	I
		(MINS)	(%)	(IN. Hg)	(MINS)	(%)	(IN. Hg)	
		(101110)	(70)	(IIV. 119)	(10113)	(70)		
	APPLY	2	22.3	24	12	··		
		3			13		<u> </u>	
	TRACER	4	20,1	15	15	1.P		
	GAS	5	2011		16			
SAMPLE COLLECTION AND TRACER GAS MONITORING	WITHIN THE	6	21.0	Ø	17	•		
	SHROUD	7		I	.18			
		8			19			
		9			20) 	· · · · · · · · · · · · · · · · · · ·
		10		N 14	21			
		11			22			
	******			NED (24 HR)	1453			
		TIME CANIS		1500				
			SAMPLE T	7				
				JUM (IN. Hg)	30	**		
				RE (IN. Hg):	5			
	Note: Do no	t use it vacu	um is <29"	Ha on onenin			La	
· · · · · · · · · · · · · · · · · · ·							<u></u>	
INTRINSIC PERMEABILITY TESTING		Depth (ft)			Meter Pump	Air Flow		
PERMEABILITY	TEST THRU	Depth (ft)		Gauge Flow	Meter Pump			TEST 4
PERMEABILITY	TEST THRU	Depth (ft)		Gauge Flow	Meter Pump	Air Flow	TEST 3	TEST 4
PERMEABILITY	TEST THRU	Depth (ft)		Gauge Gauge Diameter of Providence ANIFOLD	Meter Pump	Air Flow		TEST 4

1

SOIL VAPOR SAMPLING LOG, SAMPLE ID: 10-37-4

PRO.I	ECT NAME	Regis.Hayward Park Station					
	and the second se	401 Concar Drive, San Mateo, CA				····	
	WEATHER:	36°, Clew	<u> </u>			<u> </u>	
	DATE:	2/25/22		- ·			
	MPLED BY:						
	WELL TYPE:						
	/ / E arlie L. 1. 1. 1. L.,	remporary		· · · · · · · · · · · · · · · · · · ·			
	VAPOR PRO	DBE SAMPLE DEPTH (FT):	4				
SAMPLE DATA			ICS-134 2/17/22				
		TROLLER SERIAL NO.:	A second se	55	CITHS		
	<u> </u>			/ 7		····	
v	BORING/WE	ELL DIAMETER (INCH):	2.25	·····			
		NITE INTERVAL (FT):	1				
	SAND PACK	(INTERVAL (FT):	1.5				
	TUBING TYP	PE:	Teflon				
	TUBING LEN	NGTH (FT):	7				
PURGE VOLUME CALCULATION	TUBING ID ((INCH):	0.17				
OALOOLATION	PURGE VOL	LUME (CC):	417				
	PURGE RAT	E (CC/MIN):	125				
	PURGE WE	LL VOLUMES	1 3				
	PURGE TIM	E (MIN):	3	.34	10.02		
- 	PURGE TIM	E (SEC):	2	:00	6	01	
	VACUUM HO	OLD TEST START TIME (24 HR):		073	0		
SHUT IN/	VACUUM HO	OLD TEST END TIME (24 HR):	0740				
10-MINUTE	VACUUM HO	OLD TEST DURATION (MIN):		[0]			
VACUUM TEST	INITIAL CAN	IISTER VACUUM (IN. Hg)	Gauge1:	21	Gauge2:	21	
	FINAL CANIS	STER VACUUM (IN. Hg):	Gauge1:	રા	Gauge2:	21	
	MEASU	REMENTS WITHIN SHROUD	TI	ME	HEI	IUM	
			(24	HR)		%)	
		PRIOR TO PURG	= 074	10	221		
		DURING PURG	E 071	43	22.	2	
PURGE AND SAMPLE TRAIN		POST PURG	E 07	.50	21.7		
LEAK TEST	MEASUREN	MENTS FROM SAMPLING TRAIN	TIME	HELIUM	PID		
			(24 HR)	(%)	(PPMV)] .	
		STAR		6:0	1.6	Use 1L tedlar bag	
		1 WELL VOLUM	0743	0.0	1.8		
		3 WELL VOLUME	5 0790	0.0	1.0		

61=0

62-21

SOIL VAPOR SAMPLING LOG, SAMPLE ID: $\frac{W-37-4}{W}$

1		Regis.Hayv	vard Park S	tation					
PROJECT LOCAT	ION:	401 Concar	Drive, San	Mateo, CA					
DATE:	2/25	5/22							
		I					"i'		
		TIME	HELIUM	VACUUM	TIME	HELIUM	VACUUM		
		(MINS)	(%)	(IN. Hg)	(MINS)	(%)	(IN Hg)		
		1			12	20.0	И.Я		
	APPLY	2	22.5	25	13				
	TRACER	3	3	2	14	22.7	10		
	GAS	4	20,1	22	15		67		
	WITHIN	5	<u>م</u> ر د	1.0	16	20.6	8		
SAMPLE	THE	. 6	22.2	19	17	220			
	SHROUD	7	22.5	11	18	620	6		
AND TRACER GAS		8	60.3	16	19				
MONITORING		9 10	22.3	13	20 21				
		10	7	*7	21				
				NED (24 HR)		250			
	L			SED (24 HR)	<u> </u>	-30 709			
				· /		10			
	TOTAL SAMPLE TIME (MINS): 9 INITIAL CANISTER VACUUM (IN. Hg) 29								
		L CANISTE				•			
	<u> </u>								
	Note: Do not	t use if vacu			g; Close ca	nister at 5"	Hg		
	Note: Do not	t use if vacu		Hg on openin	g; Close ca	nister at 5"	Hg		
INTRINSIC PERMEABILITY TESTING	Note: Do not	Depth (ft)		Hg on openin	Meter Pump	Air Flow			
PERMEABILITY	Note: Do not	Depth (ft)	UM IS <29"	Hg on openin Gauge Diameter of P	Meter Pump robe (in.)	14 - 14		TEST 4	

APPENDIX D

LABORATORY ANALYTICAL DATA

AND CHAIN-OF-CUSTODY FORMS

LABORATORY TEST REPORT

K PRIME INC.

ACCT: 9946

TO: MS. SHARON SQUIRE WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

> Phone: 415-460-6770 Email: main westenvironmental.com

FROM: Richard A. Kagel, Ph.D. RAK 69 AB 3/1/22 Laboratory Director

SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

The following samples were received at our laboratory on February 23, 2022.

SAMPLE ID	ΤΥΡΕ	DATE	TIME	KPI LAB #
W-25-0.5'	SOIL	2/23/2022	9:40	228941
W-25-3'	SOIL	2/23/2022	9:55	228942
W-25-6'	SOIL	2/23/2022	10:02	228943
W-25-10'	SOIL	2/23/2022	10:17	228944
W-26-0.5'	SOIL	2/23/2022	10:08	228945
W-26-3'	SOIL	2/23/2022	10:24	228946
W-26-6'	SOIL	2/23/2022	10:33	228947
W-26-10'	SOIL	2/23/2022	10:53	228948
W-27-4'	SOIL	2/23/2022	9:10	228949
W-27-3'	SOIL	2/23/2022	9:00	228950
W-27-6'	SOIL	2/23/2022	9:20	228951
W-27-10'	SOIL	2/23/2022	9:30	228952
022322-SOIL	SOIL	2/23/2022	1:00	228953

Test results included in this report meet the requirements of ISO/IEC 17025:2017 as verified by the ANSI-ASQ National Accreditation Board (ANAB), and/or the requirements of the California Environmental Laboratory Accredidation Program (CA-ELAP), as applicable. Refer to certificates and scopes of accreditation AT-1427 (ANAB) and CA-ELAP #1532.

Results relate only to the samples tested. This test report shall not be reproduced except in full, without written permission of the laboratory.

If there are questions or concerns regarding this report, please contact your laboratory representative.

K Prime, Inc. 3621 Westwind Blvd. Santa Rosa, CA 95403 Tel: (707)-527-7574 Fax: (707)-527-7879

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-25-0.5' LAB NO: 228941 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:40 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.43	ND
CHLOROMETHANE	74-87-3	2.43	ND
VINYL CHLORIDE	75-01-4	2.43	ND
BROMOMETHANE	74-83-9	2.43	ND
CHLOROETHANE	75-00-3	2.43	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.43	ND
1,1-DICHLOROETHENE	75-35-4	2.43	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.43	ND
METHYLENE CHLORIDE	75-09-2	12.1	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	2.43	ND
1,1-DICHLOROETHANE	75-34-3	2.43	ND
CIS-1,2-DICHLOROETHENE	156-59-2	2.43	ND
2,2-DICHLOROPROPANE	594-20-7	2.43	ND
BROMOCHLOROMETHANE	74-97-5	2.43	ND
CHLOROFORM	67-66-3	2.43	ND
1,1,1-TRICHLOROETHANE	71-55-6	2.43	ND
CARBON TETRACHLORIDE	56-23-5	2.43	ND
1,1-DICHLOROPROPENE	563-58-6	2.43	ND
BENZENE	71-43-2	2.43	ND
1,2-DICHLOROETHANE	107-06-2	2.43	ND
TRICHLOROETHENE	79-01-6	2.43	ND
1,2-DICHLOROPROPANE	78-87-5	2.43	ND
DIBROMOMETHANE	74-95-3	2.43	ND
BROMODICHLOROMETHANE	75-27-4	2.43	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.43	ND
TOLUENE	108-88-3	2.43	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.43	ND
1,1,2-TRICHLOROETHANE	79-00-5	2.43	ND
TETRACHLOROETHENE	127-18-4	2.43	ND
1,3-DICHLOROPROPANE	142-28-9	2.43	ND
DIBROMOCHLOROMETHANE	124-48-1	2.43	ND
1,2-DIBROMOETHANE	106-93-4	2.43	ND
CHLOROBENZENE	108-90-7	2.43	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	2.43	ND
ETHYLBENZENE	100-41-4	2.43	ND
XYLENE (M+P)	1330-20-7	2.43	ND
XYLENE (O)	1330-20-7	2.43	ND
STYRENE	100-42-5	2.43	ND
BROMOFORM	75-25-2	2.43	ND
ISOPROPYLBENZENE	98-82-8	2.43	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	2.43	ND
BROMOBENZENE	108-86-1	2.43	ND
1,2,3-TRICHLOROPROPANE	96-18-4	2.43	ND
N-PROPYLBENZENE	103-65-1	2.43	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE ID: W-25-0.5' LAB NO: 228941 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:40 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	2.43	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	2.43	ND
4-CHLOROTOLUENE	106-43-4	2.43	ND
TERT-BUTYLBENZENE	98-06-6	2.43	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	2.43	ND
SEC-BUTYLBENZENE	135-98-8	2.43	ND
1,3-DICHLOROBENZENE	541-73-1	2.43	ND
4-ISOPROPYLTOLUENE	99-87-6	2.43	ND
1,4-DICHLOROBENZENE	106-46-7	2.43	ND
N-BUTYLBENZENE	104-51-8	2.43	ND
1,2-DICHLOROBENZENE	95-50-1	2.43	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	2.43	ND
1,2,4-TRICHLOROBENZENE	120-82-1	4.85	ND
HEXACHLOROBUTADIENE	87-68-3	4.85	ND
NAPHTHALENE	91-20-3	4.85	ND
1,2,3-TRICHLOROBENZENE	87-61-6	4.85	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	97
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	96

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA -NOT APPLICABLE OR AVAILABLE

APPROVED BY:	1	9h
DATE:	30	2022

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-25-3' LAB NO: 228942 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:55 BATCH NO: 021122S1

DATE ANALYZED: 02/24/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.78	ND
CHLOROMETHANE	74-87-3	1.78	ND
VINYL CHLORIDE	75-01-4	1.78	ND
BROMOMETHANE	74-83-9	1.78	ND
CHLOROETHANE	75-00-3	1.78	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.78	ND
1.1-DICHLOROETHENE	75-35-4	1.78	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.78	ND
METHYLENE CHLORIDE	75-09-2	8.88	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.78	ND
1.1-DICHLOROETHANE	75-34-3	1.78	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.78	ND
2,2-DICHLOROPROPANE	594-20-7	1.78	ND
BROMOCHLOROMETHANE	74-97-5	1.78	ND
CHLOROFORM	67-66-3	1.78	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.78	ND
CARBON TETRACHLORIDE	56-23-5	1.78	ND
1,1-DICHLOROPROPENE	563-58-6	1.78	ND
BENZENE	71-43-2	1.78	ND
1.2-DICHLOROETHANE	107-06-2	1.78	5.38
TRICHLOROETHENE	79-01-6	1.78	
1,2-DICHLOROPROPANE	78-87-5	1.78	ND
DIBROMOMETHANE	74-95-3	1.78	ND
BROMODICHLOROMETHANE	74-95-3	1.78	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.78	ND
TOLUENE	108-88-3	1.78	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.78	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.78	ND
		1.78	ND
	127-18-4	1.78	ND
	142-28-9		
	124-48-1	1.78	ND
	106-93-4	1.78	ND
	108-90-7	1.78	ND
	630-20-6	1.78	ND
ETHYLBENZENE	100-41-4	1.78	ND
XYLENE (M+P)	1330-20-7	1.78	ND
XYLENE (O)	1330-20-7	1.78	ND
STYRENE	100-42-5	1.78	ND
BROMOFORM	75-25-2	1.78	ND
ISOPROPYLBENZENE	98-82-8	1.78	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.78	ND
BROMOBENZENE	108-86-1	1.78	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.78	ND
N-PROPYLBENZENE	103-65-1	1.78	ND

K PRIME PROJECT: 9946

REFERENCE: EPA 5035/8260

CLIENT PROJECT:

SAMPLE ID: W-25-3' LAB NO: 228942 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:55 BATCH NO: 021122S1

DATE ANALYZED: 02/24/2022

METHOD: VOLATILE ORGANIC COMPOUNDS

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.78	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.78	ND
4-CHLOROTOLUENE	106-43-4	1.78	ND
TERT-BUTYLBENZENE	98-06-6	1.78	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.78	ND
SEC-BUTYLBENZENE	135-98-8	1.78	ND
1,3-DICHLOROBENZENE	541-73-1	1.78	ND
4-ISOPROPYLTOLUENE	99-87-6	1.78	ND
1,4-DICHLOROBENZENE	106-46-7	1.78	ND
N-BUTYLBENZENE	104-51-8	1.78	ND
1,2-DICHLOROBENZENE	95-50-1	1.78	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.78	ND
1,2,4-TRICHLOROBENZENE	120-82-1	3.55	ND
HEXACHLOROBUTADIENE	87-68-3	3.55	ND
NAPHTHALENE	91-20-3	3.55	ND
1,2,3-TRICHLOROBENZENE	87-61-6	3.55	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	99
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	96

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA -NOT APPLICABLE OR AVAILABLE

APPROVED BY:	A		AL	
DATE:	3	ĺ	2022	

SAMPLE ID: W-25-6' LAB NO: 228943 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:02 BATCH NO: 022222S1

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

DATE ANALYZED: 02/26/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.65	ND
CHLOROMETHANE	74-87-3	2.65	ND
VINYL CHLORIDE	75-01-4	2.65	ND
BROMOMETHANE	74-83-9	2.65	ND
CHLOROETHANE	75-00-3	2.65	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.65	ND
1,1-DICHLOROETHENE	75-35-4	2.65	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.65	ND
METHYLENE CHLORIDE	75-09-2	13.3	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	2.65	ND
1,1-DICHLOROETHANE	75-34-3	2.65	ND
CIS-1,2-DICHLOROETHENE	156-59-2	2.65	ND
2.2-DICHLOROPROPANE	594-20-7	2.65	ND
BROMOCHLOROMETHANE	74-97-5	2.65	ND
CHLOROFORM	67-66-3	2.65	ND
1,1,1-TRICHLOROETHANE	71-55-6	2.65	ND
CARBON TETRACHLORIDE	56-23-5	2.65	ND
1,1-DICHLOROPROPENE	563-58-6	2.65	ND
BENZENE	71-43-2	2.65	ND
1,2-DICHLOROETHANE	107-06-2	2.65	4.23
TRICHLOROETHENE	79-01-6	2.65	ND
1,2-DICHLOROPROPANE	78-87-5	2.65	ND
DIBROMOMETHANE	74-95-3	2.65	ND
BROMODICHLOROMETHANE	75-27-4	2.65	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.65	ND
TOLUENE	108-88-3	2.65	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.65	ND
1,1,2-TRICHLOROETHANE	79-00-5	2.65	ND
TETRACHLOROETHENE	127-18-4	2.65	ND
1.3-DICHLOROPROPANE	142-28-9	2.65	ND
DIBROMOCHLOROMETHANE	124-48-1	2.65	ND
1.2-DIBROMOETHANE	106-93-4	2.65	ND
CHLOROBENZENE	108-90-7	2.65	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	2.65	ND
ETHYLBENZENE	100-41-4	2.65	ND
XYLENE (M+P)	1330-20-7	2.65	ND
XYLENE (O)	1330-20-7	2.65	ND
STYRENE	100-42-5	2.65	ND
BROMOFORM	75-25-2	2.65	ND
ISOPROPYLBENZENE	98-82-8	2.65	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	2.65	ND
BROMOBENZENE	108-86-1	2.65	ND
1,2,3-TRICHLOROPROPANE	96-18-4	2.65	ND
N-PROPYLBENZENE	103-65-1	2.65	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK SAMPLE ID: W-25-6' LAB NO: 228943 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:02 BATCH NO: 022222S1

DATE ANALYZED: 02/26/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	2.65	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	2.65	ND
4-CHLOROTOLUENE	106-43-4	2.65	ND
TERT-BUTYLBENZENE	98-06-6	2.65	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	2.65	ND
SEC-BUTYLBENZENE	135-98-8	2.65	ND
1,3-DICHLOROBENZENE	541-73-1	2.65	ND
4-ISOPROPYLTOLUENE	99-87-6	2.65	ND
1,4-DICHLOROBENZENE	106-46-7	2.65	ND
N-BUTYLBENZENE	104-51-8	2.65	ND
1,2-DICHLOROBENZENE	95-50-1	2.65	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	2.65	ND
1,2,4-TRICHLOROBENZENE	120-82-1	5.30	ND
HEXACHLOROBUTADIENE	87-68-3	5.30	ND
NAPHTHALENE	91-20-3	5.30	ND
1,2,3-TRICHLOROBENZENE	87-61-6	5.30	ND

0/

SURROGATE RECOVERY

JUNNUGATE RECOVERT	70
DIBROMOFLUOROMETHANE	112
TOLUENE-D8	101
4-BROMOFLUOROBENZENE	102

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-25-10' LAB NO: 228944 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:17 BATCH NO: 022222S1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

COMPOUND NAME CAS NO.		REPORTING LIMIT	SAMPLE CONC	
DICHLORODIFLUOROMETHANE	75-71-8	23.5	ND	
CHLOROMETHANE	74-87-3	23.5	ND	
VINYL CHLORIDE	75-01-4	23.5	ND	
BROMOMETHANE	74-83-9	23.5	ND	
CHLOROETHANE	75-00-3	23.5	ND	
TRICHLOROFLUOROMETHANE	75-69-4	23.5	ND	
1,1-DICHLOROETHENE	75-35-4	23.5	ND	
TRICHLOROTRIFLUOROETHANE	76-13-1	23.5	ND	
METHYLENE CHLORIDE	75-09-2	117	ND	
TRANS-1,2-DICHLOROETHENE	156-60-5	23.5	ND	
1,1-DICHLOROETHANE	75-34-3	23.5	ND	
CIS-1,2-DICHLOROETHENE	156-59-2	23.5	ND	
2,2-DICHLOROPROPANE	594-20-7	23.5	ND	
BROMOCHLOROMETHANE	74-97-5	23.5	ND	
CHLOROFORM	67-66-3	23.5	ND	
1,1,1-TRICHLOROETHANE	71-55-6	23.5	ND	
CARBON TETRACHLORIDE	56-23-5	23.5	ND	
1,1-DICHLOROPROPENE	563-58-6	23.5	ND	
BENZENE	71-43-2	23.5	ND	
1,2-DICHLOROETHANE	107-06-2	23.5	613	
TRICHLOROETHENE	79-01-6	23.5	ND	
1,2-DICHLOROPROPANE	78-87-5	23.5	ND	
DIBROMOMETHANE	74-95-3	23.5	ND	
BROMODICHLOROMETHANE	75-27-4	23.5	ND	
TRANS-1,3-DICHLOROPROPENE	10061-02-6	23.5	ND	
TOLUENE	108-88-3	23.5	ND	
CIS-1,3-DICHLOROPROPENE	10061-01-5	23.5	ND	
1,1,2-TRICHLOROETHANE	79-00-5	23.5	ND	
TETRACHLOROETHENE	127-18-4	23.5	ND	
1,3-DICHLOROPROPANE	142-28-9	23.5	ND	
DIBROMOCHLOROMETHANE	124-48-1	23.5	ND	
1,2-DIBROMOETHANE	106-93-4	23.5	ND	
CHLOROBENZENE	108-90-7	23.5	ND	
1,1,1,2-TETRACHLOROETHANE	630-20-6	23.5	ND	
ETHYLBENZENE	100-41-4	23.5	ND	
XYLENE (M+P)	1330-20-7	23.5	ND	
XYLENE (O)	1330-20-7	23.5	ND	
STYRENE	100-42-5	23.5	ND	
BROMOFORM	75-25-2	23.5	ND	
ISOPROPYLBENZENE	98-82-8	23.5	ND	
1,1,2,2-TETRACHLOROETHANE	79-34-5	23.5	ND	
BROMOBENZENE	108-86-1	23.5	ND	
1,2,3-TRICHLOROPROPANE	96-18-4	23.5	ND	
N-PROPYLBENZENE	103-65-1	23.5	ND	

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE ID: W-25-10' LAB NO: 228944 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:17 BATCH NO: 022222S1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	23.5	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	23.5	ND
4-CHLOROTOLUENE	106-43-4	23.5	ND
TERT-BUTYLBENZENE	98-06-6	23.5	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	23.5	ND
SEC-BUTYLBENZENE	135-98-8	23.5	ND
1,3-DICHLOROBENZENE	541-73-1	23.5	ND
4-ISOPROPYLTOLUENE	99-87-6	23.5	ND
1,4-DICHLOROBENZENE	106-46-7	23.5	ND
N-BUTYLBENZENE	104-51-8	23.5	ND
1,2-DICHLOROBENZENE	95-50-1	23.5	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	23.5	ND
1,2,4-TRICHLOROBENZENE	120-82-1	47.0	ND
HEXACHLOROBUTADIENE	87-68-3	47.0	ND
NAPHTHALENE	91-20-3	47.0	ND
1,2,3-TRICHLOROBENZENE	87-61-6	47.0	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	93
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	96

NOTES:

APPROVED BY:		G	R	
DATE:	2	J	2022	

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-26-0.5' LAB NO: 228945 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:08 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

REGIS.HAYWARDPARK; WO 21.02 TASK

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	1.98	ND
CHLOROMETHANE	74-87-3	1.98	ND
VINYL CHLORIDE	75-01-4	1.98	ND
BROMOMETHANE	74-83-9	1.98	ND
CHLOROETHANE	75-00-3	1.98	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.98	ND
1,1-DICHLOROETHENE	75-35-4	1.98	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.98	ND
METHYLENE CHLORIDE	75-09-2	9.88	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.98	ND
1,1-DICHLOROETHANE	75-34-3	1.98	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.98	ND
2,2-DICHLOROPROPANE	594-20-7	1.98	ND
BROMOCHLOROMETHANE	74-97-5	1.98	ND
CHLOROFORM	67-66-3	1.98	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.98	ND
CARBON TETRACHLORIDE	56-23-5	1.98	ND
1,1-DICHLOROPROPENE	563-58-6	1.98	ND
BENZENE	71-43-2	1.98	ND
1,2-DICHLOROETHANE	107-06-2	1.98	ND
TRICHLOROETHENE	79-01-6	1.98	ND
1,2-DICHLOROPROPANE	78-87-5	1.98	ND
DIBROMOMETHANE	74-95-3	1.98	ND
BROMODICHLOROMETHANE	75-27-4	1.98	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.98	ND
TOLUENE	108-88-3	1.98	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.98	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.98	ND
TETRACHLOROETHENE	127-18-4	1.98	ND
1,3-DICHLOROPROPANE	142-28-9	1.98	ND
DIBROMOCHLOROMETHANE	124-48-1	1.98	ND
1,2-DIBROMOETHANE	106-93-4	1.98	ND
CHLOROBENZENE	108-90-7	1.98	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.98	ND
ETHYLBENZENE	100-41-4	1.98	ND
XYLENE (M+P)	1330-20-7	1.98	ND
XYLENE (O)	1330-20-7	1.98	ND
STYRENE	100-42-5	1.98	ND
BROMOFORM	75-25-2	1.98	ND
ISOPROPYLBENZENE	98-82-8	1.98	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.98	ND
BROMOBENZENE	108-86-1	1.98	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.98	ND
N-PROPYLBENZENE	103-65-1	1.98	ND

SAMPLE ID: W-26-0.5' LAB NO: 228945 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:08 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.98	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.98	ND
4-CHLOROTOLUENE	106-43-4	1.98	ND
TERT-BUTYLBENZENE	98-06-6	1.98	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.98	ND
SEC-BUTYLBENZENE	135-98-8	1.98	ND
1,3-DICHLOROBENZENE	541-73-1	1.98	ND
4-ISOPROPYLTOLUENE	99-87-6	1.98	ND
1,4-DICHLOROBENZENE	106-46-7	1.98	ND
N-BUTYLBENZENE	104-51-8	1.98	ND
1,2-DICHLOROBENZENE	95-50-1	1.98	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.98	ND
1,2,4-TRICHLOROBENZENE	120-82-1	3.95	ND
HEXACHLOROBUTADIENE	87-68-3	3.95	ND
NAPHTHALENE	91-20-3	3.95	ND
1,2,3-TRICHLOROBENZENE	87-61-6	3.95	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	93
TOLUENE-D8	99
4-BROMOFLUOROBENZENE	95

NOTES:

APPROVED BY: 022 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK SAMPLE ID: VV-26-3' LAB NO: 228946 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:24 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	1.76	ND
CHLOROMETHANE	74-87-3	1.76	ND
VINYL CHLORIDE	75-01-4	1.76	ND
BROMOMETHANE	74-83-9	1.76	ND
CHLOROETHANE	75-00-3	1.76	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.76	ND
1,1-DICHLOROETHENE	75-35-4	1.76	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.76	ND
METHYLENE CHLORIDE	75-09-2	8.78	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.76	ND
1,1-DICHLOROETHANE	75-34-3	1.76	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.76	ND
2,2-DICHLOROPROPANE	594-20-7	1.76	ND
BROMOCHLOROMETHANE	74-97-5	1.76	ND
CHLOROFORM	67-66-3	1.76	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.76	ND
CARBON TETRACHLORIDE	56-23-5	1.76	ND
1,1-DICHLOROPROPENE	563-58-6	1.76	ND
BENZENE	71-43-2	1.76	ND
1,2-DICHLOROETHANE	107-06-2	1.76	ND
TRICHLOROETHENE	79-01-6	1.76	ND
1,2-DICHLOROPROPANE	78-87-5	1.76	ND
DIBROMOMETHANE	74-95-3	1.76	ND
BROMODICHLOROMETHANE	75-27-4	1.76	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.76	ND
TOLUENE	108-88-3	1.76	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.76	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.76	ND
TETRACHLOROETHENE	127-18-4	1.76	ND
1.3-DICHLOROPROPANE	142-28-9	1.76	ND
DIBROMOCHLOROMETHANE	124-48-1	1.76	ND
1,2-DIBROMOETHANE	106-93-4	1.76	ND
CHLOROBENZENE	108-90-7	1.76	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.76	ND
ETHYLBENZENE	100-41-4	1.76	ND
XYLENE (M+P)	1330-20-7	1.76	ND
XYLENE (O)	1330-20-7	1.76	ND
STYRENE	100-42-5	1.76	ND
BROMOFORM	75-25-2	1.76	ND
ISOPROPYLBENZENE	98-82-8	1.76	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.76	ND
BROMOBENZENE	108-86-1	1.76	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.76	ND
N-PROPYLBENZENE	103-65-1	1.76	ND

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-26-3' LAB NO: 228946 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:24 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.76	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.76	ND
4-CHLOROTOLUENE	106-43-4	1.76	ND
TERT-BUTYLBENZENE	98-06-6	1.76	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.76	ND
SEC-BUTYLBENZENE	135-98-8	1.76	ND
1,3-DICHLOROBENZENE	541-73-1	1.76	ND
4-ISOPROPYLTOLUENE	99-87-6	1.76	ND
1,4-DICHLOROBENZENE	106-46-7	1.76	ND
N-BUTYLBENZENE	104-51-8	1.76	ND
1,2-DICHLOROBENZENE	95-50-1	1.76	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.76	ND
1,2,4-TRICHLOROBENZENE	120-82-1	3.51	ND
HEXACHLOROBUTADIENE	87-68-3	3.51	ND
NAPHTHALENE	91-20-3	3.51	ND
1,2,3-TRICHLOROBENZENE	87-61-6	3.51	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	93
TOLUENE-D8	101
4-BROMOFLUOROBENZENE	99

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-26-6' LAB NO: 228947 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:33 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	24.5	ND
CHLOROMETHANE	74-87-3	24.5	ND
VINYL CHLORIDE	75-01-4	24.5	ND
BROMOMETHANE	74-83-9	24.5	ND
CHLOROETHANE	75-00-3	24.5	ND
TRICHLOROFLUOROMETHANE	75-69-4	24.5	ND
1.1-DICHLOROETHENE	75-35-4	24.5	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	24.5	ND
METHYLENE CHLORIDE	75-09-2	122	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	24.5	ND
1,1-DICHLOROETHANE	75-34-3	24.5	ND
CIS-1,2-DICHLOROETHENE	156-59-2	24.5	ND
2,2-DICHLOROPROPANE	594-20-7	24.5	ND
BROMOCHLOROMETHANE	74-97-5	24.5	ND
CHLOROFORM	67-66-3	24.5	ND
1,1,1-TRICHLOROETHANE	71-55-6	24.5	ND
CARBON TETRACHLORIDE	56-23-5	24.5	ND
1,1-DICHLOROPROPENE	563-58-6	24.5	ND
BENZENE	71-43-2	24.5	ND
1,2-DICHLOROETHANE	107-06-2	24.5	ND
TRICHLOROETHENE	79-01-6	24.5	ND
1,2-DICHLOROPROPANE	78-87-5	24.5	ND
DIBROMOMETHANE	74-95-3	24.5	ND
BROMODICHLOROMETHANE	75-27-4	24.5	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	24.5	ND
TOLUENE	108-88-3	24.5	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	24.5	ND
1,1,2-TRICHLOROETHANE	79-00-5	24.5	ND
TETRACHLOROETHENE	127-18-4	24.5	ND
1,3-DICHLOROPROPANE	142-28-9	24.5	ND
DIBROMOCHLOROMETHANE	124-48-1	24.5	ND
1,2-DIBROMOETHANE	106-93-4	24.5	ND
CHLOROBENZENE	108-90-7	24.5	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	24.5	ND
ETHYLBENZENE	100-41-4	24.5	ND
XYLENE (M+P)	1330-20-7	24.5	ND
XYLENE (O)	1330-20-7	24.5	ND
STYRENE	100-42-5	24.5	ND
BROMOFORM	75-25-2	24.5	ND
ISOPROPYLBENZENE	98-82-8	24.5	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	24.5	ND
BROMOBENZENE	108-86-1	24.5	ND
	96-18-4	24.5	ND
			ND
N-PROPYLBENZENE	103-65-1	24.5	

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE ID: W-26-6' LAB NO: 228947 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:33 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	24.5	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	24.5	ND
4-CHLOROTOLUENE	106-43-4	24.5	ND
TERT-BUTYLBENZENE	98-06-6	24.5	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	24.5	ND
SEC-BUTYLBENZENE	135-98-8	24.5	ND
1,3-DICHLOROBENZENE	541-73-1	24.5	ND
4-ISOPROPYLTOLUENE	99-87-6	24.5	ND
1,4-DICHLOROBENZENE	106-46-7	24.5	ND
N-BUTYLBENZENE	104-51-8	24.5	ND
1,2-DICHLOROBENZENE	95-50-1	24.5	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	24.5	ND
1,2,4-TRICHLOROBENZENE	120-82-1	48.9	ND
HEXACHLOROBUTADIENE	87-68-3	48.9	ND
NAPHTHALENE	91-20-3	48.9	ND
1,2,3-TRICHLOROBENZENE	87-61-6	48.9	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	88
TOLUENE-D8	101
4-BROMOFLUOROBENZENE	103

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-26-10' LAB NO: 228948 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:53 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	24.2	ND
CHLOROMETHANE	74-87-3	24.2	ND
VINYL CHLORIDE	75-01-4	24.2	ND
BROMOMETHANE	74-83-9	24.2	ND
CHLOROETHANE	75-00-3	24.2	ND
TRICHLOROFLUOROMETHANE	75-69-4	24.2	ND
1,1-DICHLOROETHENE	75-35-4	24.2	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	24.2	ND
METHYLENE CHLORIDE	75-09-2	121	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	24.2	ND
1,1-DICHLOROETHANE	75-34-3	24.2	ND
CIS-1,2-DICHLOROETHENE	156-59-2	24.2	ND
2,2-DICHLOROPROPANE	594-20-7	24.2	ND
BROMOCHLOROMETHANE	74-97-5	24.2	ND
CHLOROFORM	67-66-3	24.2	ND
1,1,1-TRICHLOROETHANE	71-55-6	24.2	ND
CARBON TETRACHLORIDE	56-23-5	24.2	ND
1,1-DICHLOROPROPENE	563-58-6	24.2	ND
BENZENE	71-43-2	24.2	ND
1,2-DICHLOROETHANE	107-06-2	24.2	34.2
TRICHLOROETHENE	79-01-6	24.2	ND
1,2-DICHLOROPROPANE	78-87-5	24.2	ND
DIBROMOMETHANE	74-95-3	24.2	ND
BROMODICHLOROMETHANE	75-27-4	24.2	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	24.2	ND
TOLUENE	108-88-3	24.2	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	24.2	ND
1,1,2-TRICHLOROETHANE	79-00-5	24.2	ND
TETRACHLOROETHENE	127-18-4	24.2	ND
1,3-DICHLOROPROPANE	142-28-9	24.2	ND
DIBROMOCHLOROMETHANE	124-48-1	24.2	ND
1.2-DIBROMOETHANE	106-93-4	24.2	ND
CHLOROBENZENE	108-90-7	24.2	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	24.2	ND
ETHYLBENZENE	100-41-4	24.2	72.6
XYLENE (M+P)	1330-20-7	24.2	ND
XYLENE (O)	1330-20-7	24.2	ND
STYRENE	100-42-5	24.2	ND
BROMOFORM	75-25-2	24.2	ND
ISOPROPYLBENZENE	98-82-8	24.2	150
1,1,2,2-TETRACHLOROETHANE	79-34-5	24.2	ND
BROMOBENZENE	108-86-1	24.2	ND
1,2,3-TRICHLOROPROPANE	96-18-4	24.2	ND
N-PROPYLBENZENE	103-65-1	24.2	225

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-26-10' LAB NO: 228948 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:53 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	24.2	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	24.2	118
4-CHLOROTOLUENE	106-43-4	24.2	ND
TERT-BUTYLBENZENE	98-06-6	24.2	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	24.2	140
SEC-BUTYLBENZENE	135-98-8	24.2	164
1,3-DICHLOROBENZENE	541-73-1	24.2	ND
4-ISOPROPYLTOLUENE	99-87-6	24.2	71.4
1,4-DICHLOROBENZENE	106-46-7	24.2	ND
N-BUTYLBENZENE	104-51-8	24.2	236
1,2-DICHLOROBENZENE	95-50-1	24.2	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	24.2	ND
1,2,4-TRICHLOROBENZENE	120-82-1	48.4	ND
HEXACHLOROBUTADIENE	87-68-3	48.4	ND
NAPHTHALENE	91-20-3	48.4	131
1,2,3-TRICHLOROBENZENE	87-61-6	48.4	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	90
TOLUENE-D8	101
4-BROMOFLUOROBENZENE	104

NOTES:

APPROVED BY:	4	A~
DATE:	3	2022

K PRIME PROJECT: 9946

REFERENCE: EPA 5035/8260

CLIENT PROJECT:

SAMPLE ID: W-27-4' LAB NO: 228949 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:10 BATCH NO: 022222S1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS

REGIS.HAYWARDPARK; WO 21.02 TASK

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	26.2	ND
CHLOROMETHANE	74-87-3	26.2	ND
VINYL CHLORIDE	75-01-4	26.2	ND
BROMOMETHANE	74-83-9	26.2	ND
CHLOROETHANE	75-00-3	26.2	ND
TRICHLOROFLUOROMETHANE	75-69-4	26.2	ND
1,1-DICHLOROETHENE	75-35-4	26.2	ND
RICHLOROTRIFLUOROETHANE	76-13-1	26.2	ND
METHYLENE CHLORIDE	75-09-2	131	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	26.2	ND
1,1-DICHLOROETHANE	75-34-3	26.2	ND
CIS-1,2-DICHLOROETHENE	156-59-2	26.2	ND
2,2-DICHLOROPROPANE	594-20-7	26.2	ND
BROMOCHLOROMETHANE	74-97-5	26.2	ND
CHLOROFORM	67-66-3	26.2	ND
1,1,1-TRICHLOROETHANE	71-55-6	26.2	ND
CARBON TETRACHLORIDE	56-23-5	26.2	ND
1,1-DICHLOROPROPENE	563-58-6	26.2	ND
BENZENE	71-43-2	26.2	ND
1,2-DICHLOROETHANE	107-06-2	26.2	ND
TRICHLOROETHENE	79-01-6	26.2	ND
1,2-DICHLOROPROPANE	78-87-5	26.2	ND
DIBROMOMETHANE	74-95-3	26.2	ND
BROMODICHLOROMETHANE	75-27-4	26.2	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	26.2	ND
TOLUENE	108-88-3	26.2	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	26.2	ND
1,1,2-TRICHLOROETHANE	79-00-5	26.2	ND
TETRACHLOROETHENE	127-18-4	26.2	ND
1,3-DICHLOROPROPANE	142-28-9	26.2	ND
DIBROMOCHLOROMETHANE	124-48-1	26.2	ND
1,2-DIBROMOETHANE	106-93-4	26.2	ND
CHLOROBENZENE	108-90-7	26.2	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	26.2	ND
ETHYLBENZENE	100-41-4	26.2	ND
XYLENE (M+P)	1330-20-7	26.2	30.0
XYLENE (O)	1330-20-7	26.2	29.9
STYRENE	100-42-5	26.2	ND
BROMOFORM	75-25-2	26.2	ND
ISOPROPYLBENZENE	98-82-8	26.2	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	26.2	ND
BROMOBENZENE	108-86-1	26.2	ND
1,2,3-TRICHLOROPROPANE	96-18-4	26.2	ND
N-PROPYLBENZENE	103-65-1	26.2	26.4

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-27-4' LAB NO: 228949 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:10 BATCH NO: 022222S1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	26.2	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	26.2	53.5
4-CHLOROTOLUENE	106-43-4	26.2	ND
TERT-BUTYLBENZENE	98-06-6	26.2	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	26.2	107
SEC-BUTYLBENZENE	135-98-8	26.2	28.6
1,3-DICHLOROBENZENE	541-73-1	26.2	ND
4-ISOPROPYLTOLUENE	99-87-6	26.2	48.2
1,4-DICHLOROBENZENE	106-46-7	26.2	ND
N-BUTYLBENZENE	104-51-8	26.2	70.4
1,2-DICHLOROBENZENE	95-50-1	26.2	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	26.2	ND
1,2,4-TRICHLOROBENZENE	120-82-1	52.4	ND
HEXACHLOROBUTADIENE	87-68-3	52.4	ND
NAPHTHALENE	91-20-3	52.4	224
1,2,3-TRICHLOROBENZENE	87-61-6	52.4	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	89
TOLUENE-D8	99
4-BROMOFLUOROBENZENE	98

NOTES:

APPROVED BY:		Ph		
DATE:	3	1	2022	

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-27-3' LAB NO: 228950 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:00 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.85	ND
CHLOROMETHANE	74-87-3	1.85	ND
VINYL CHLORIDE	75-01-4	1.85	ND
BROMOMETHANE	74-83-9	1.85	ND
CHLOROETHANE	75-00-3	1.85	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.85	ND
1,1-DICHLOROETHENE	75-35-4	1.85	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.85	ND
METHYLENE CHLORIDE	75-09-2	9.23	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.85	ND
1,1-DICHLOROETHANE	75-34-3	1.85	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.85	ND
2,2-DICHLOROPROPANE	594-20-7	1.85	ND
BROMOCHLOROMETHANE	74-97-5	1.85	ND
CHLOROFORM	67-66-3	1.85	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.85	ND
CARBON TETRACHLORIDE	56-23-5	1.85	ND
1,1-DICHLOROPROPENE	563-58-6	1.85	ND
BENZENE	71-43-2	1.85	ND
1,2-DICHLOROETHANE	107-06-2	1.85	ND
TRICHLOROETHENE	79-01-6	1.85	ND
1,2-DICHLOROPROPANE	78-87-5	1.85	ND
DIBROMOMETHANE	74-95-3	1.85	ND
BROMODICHLOROMETHANE	75-27-4	1.85	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.85	ND
TOLUENE	108-88-3	1.85	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.85	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.85	ND
TETRACHLOROETHENE	127-18-4	1.85	ND
1,3-DICHLOROPROPANE	142-28-9	1.85	ND
DIBROMOCHLOROMETHANE	124-48-1	1.85	ND
1,2-DIBROMOETHANE	106-93-4	1.85	ND
CHLOROBENZENE	108-90-7	1.85	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.85	ND
ETHYLBENZENE	100-41-4	1.85	ND
XYLENE (M+P)	1330-20-7	1.85	ND
XYLENE (O)	1330-20-7	1.85	ND
STYRENE	100-42-5	1.85	ND
BROMOFORM	75-25-2	1.85	ND
ISOPROPYLBENZENE	98-82-8	1.85	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.85	ND
BROMOBENZENE	108-86-1	1.85	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.85	ND
N-PROPYLBENZENE	103-65-1	1.85	ND

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-27-3' LAB NO: 228950 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:00 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.85	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.85	ND
4-CHLOROTOLUENE	106-43-4	1.85	ND
TERT-BUTYLBENZENE	98-06-6	1.85	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.85	ND
SEC-BUTYLBENZENE	135-98-8	1.85	ND
1,3-DICHLOROBENZENE	541-73-1	1.85	ND
4-ISOPROPYLTOLUENE	99-87-6	1.85	ND
1,4-DICHLOROBENZENE	106-46-7	1.85	ND
N-BUTYLBENZENE	104-51-8	1.85	ND
1,2-DICHLOROBENZENE	95-50-1	1.85	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.85	ND
1,2,4-TRICHLOROBENZENE	120-82-1	3.69	ND
HEXACHLOROBUTADIENE	87-68-3	3.69	ND
NAPHTHALENE	91-20-3	3.69	ND
1,2,3-TRICHLOROBENZENE	87-61-6	3.69	NĎ

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	95
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	94

NOTES:

APPROVED BY: DATE:

SAMPLE ID: W-27-6' LAB NO: 228951 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:20 BATCH NO: 021122S1

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.71	ND
CHLOROMETHANE	74-87-3	1.71	ND
VINYL CHLORIDE	75-01-4	1.71	ND
BROMOMETHANE	74-83-9	1.71	ND
CHLOROETHANE	75-00-3	1.71	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.71	ND
1,1-DICHLOROETHENE	75-35-4	1.71	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.71	ND
METHYLENE CHLORIDE	75-09-2	8.55	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.71	ND
1,1-DICHLOROETHANE	75-34-3	1.71	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.71	ND
2,2-DICHLOROPROPANE	594-20-7	1.71	ND
BROMOCHLOROMETHANE	74-97-5	1.71	ND
CHLOROFORM	67-66-3	1.71	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.71	ND
CARBON TETRACHLORIDE	56-23-5	1.71	ND
1,1-DICHLOROPROPENE	563-58-6	1.71	ND
BENZENE	71-43-2	1.71	ND
1,2-DICHLOROETHANE	107-06-2	1.71	ND
TRICHLOROETHENE	79-01-6	1.71	ND
1,2-DICHLOROPROPANE	78-87-5	1.71	ND
DIBROMOMETHANE	74-95-3	1.71	ND
BROMODICHLOROMETHANE	75-27-4	1.71	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.71	ND
TOLUENE	108-88-3	1.71	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.71	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.71	ND
TETRACHLOROETHENE	127-18-4	1.71	ND
1,3-DICHLOROPROPANE	142-28-9	1.71	ND
DIBROMOCHLOROMETHANE	124-48-1	1.71	ND
1,2-DIBROMOETHANE	106-93-4	1.71	ND
CHLOROBENZENE	108-90-7	1.71	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.71	ND
ETHYLBENZENE	100-41-4	1.71	ND
XYLENE (M+P)	1330-20-7	1.71	ND
XYLENE (O)	1330-20-7	1.71	ND
STYRENE	100-42-5	1.71	ND
BROMOFORM	75-25-2	1.71	ND
ISOPROPYLBENZENE	98-82-8	1.71	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.71	ND
BROMOBENZENE	108-86-1	1.71	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.71	ND
N-PROPYLBENZENE	103-65-1	1.71	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE ID: W-27-6' LAB NO: 228951 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:20 BATCH NO: 021122S1

DATE ANALYZED: 02/25/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.71	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.71	ND
4-CHLOROTOLUENE	106-43-4	1.71	ND
TERT-BUTYLBENZENE	98-06-6	1.71	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.71	ND
SEC-BUTYLBENZENE	135-98-8	1.71	ND
1,3-DICHLOROBENZENE	541-73-1	1.71	ND
4-ISOPROPYLTOLUENE	99-87-6	1.71	ND
1,4-DICHLOROBENZENE	106-46-7	1.71	ND
N-BUTYLBENZENE	104-51-8	1.71	ND
1,2-DICHLOROBENZENE	95-50-1	1.71	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.71	ND
1,2,4-TRICHLOROBENZENE	120-82-1	3.42	ND
HEXACHLOROBUTADIENE	87-68-3	3.42	ND
NAPHTHALENE	91-20-3	3.42	ND
1,2,3-TRICHLOROBENZENE	87-61-6	3.42	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	107
TOLUENE-D8	102
4-BROMOFLUOROBENZENE	104

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: W-27-10' LAB NO: 228952 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:30 BATCH NO: 022222S1

DATE ANALYZED: 02/26/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

REGIS.HAYWARDPARK; WO 21.02 TASK

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	2.40	ND
CHLOROMETHANE	74-87-3	2.40	ND
VINYL CHLORIDE	75-01-4	2.40	ND
BROMOMETHANE	74-83-9	2.40	ND
CHLOROETHANE	75-00-3	2.40	ND
TRICHLOROFLUOROMETHANE	75-69-4	2.40	ND
1,1-DICHLOROETHENE	75-35-4	2.40	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	2.40	ND
METHYLENE CHLORIDE	75-09-2	12.0	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	2.40	ND
1,1-DICHLOROETHANE	75-34-3	2.40	ND
CIS-1,2-DICHLOROETHENE	156-59-2	2.40	ND
2,2-DICHLOROPROPANE	594-20-7	2.40	ND
BROMOCHLOROMETHANE	74-97-5	2.40	ND
CHLOROFORM	67-66-3	2.40	ND
1,1,1-TRICHLOROETHANE	71-55-6	2.40	ND
CARBON TETRACHLORIDE	56-23-5	2.40	ND
1,1-DICHLOROPROPENE	563-58-6	2.40	ND
BENZENE	71-43-2	2.40	ND
1.2-DICHLOROETHANE	107-06-2	2.40	ND
TRICHLOROETHENE	79-01-6	2.40	ND
1,2-DICHLOROPROPANE	78-87-5	2.40	ND
DIBROMOMETHANE	74-95-3	2.40	ND
BROMODICHLOROMETHANE	75-27-4	2.40	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	2.40	ND
TOLUENE	108-88-3	2.40	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	2.40	ND
1,1,2-TRICHLOROETHANE	79-00-5	2.40	ND
TETRACHLOROETHENE	127-18-4	2.40	ND
1.3-DICHLOROPROPANE	142-28-9	2.40	ND
		2.40	ND
	124-48-1	2.40	ND
	106-93-4	2.40	ND
	108-90-7		ND
	630-20-6	2.40	
		2.40	ND
XYLENE (M+P)	1330-20-7	2.40	ND
XYLENE (O)	1330-20-7	2.40	ND
STYRENE	100-42-5	2.40	ND
BROMOFORM	75-25-2	2.40	ND
ISOPROPYLBENZENE	98-82-8	2.40	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	2.40	ND
BROMOBENZENE	108-86-1	2.40	ND
1,2,3-TRICHLOROPROPANE	96-18-4	2.40	ND
N-PROPYLBENZENE	103-65-1	2.40	ND

K PRIME PROJECT: 9946

REFERENCE: EPA 5035/8260

CLIENT PROJECT:

SAMPLE ID: W-27-10' LAB NO: 228952 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:30 BATCH NO: 022222S1

DATE ANALYZED: 02/26/2022

METHOD: VOLATILE ORGANIC COMPOUNDS

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	2.40	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	2.40	ND
4-CHLOROTOLUENE	106-43-4	2.40	ND
TERT-BUTYLBENZENE	98-06-6	2.40	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	2.40	ND
SEC-BUTYLBENZENE	135-98-8	2.40	ND
1,3-DICHLOROBENZENE	541-73-1	2.40	ND
4-ISOPROPYLTOLUENE	99-87-6	2.40	ND
1,4-DICHLOROBENZENE	106-46-7	2.40	ND
N-BUTYLBENZENE	104-51-8	2.40	ND
1,2-DICHLOROBENZENE	95-50-1	2.40	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	2.40	ND
1,2,4-TRICHLOROBENZENE	120-82-1	4.79	ND
HEXACHLOROBUTADIENE	87-68-3	4.79	ND
NAPHTHALENE	91-20-3	4.79	ND
1,2,3-TRICHLOROBENZENE	87-61-6	4.79	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	94
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	100

NOTES:

APPROVED BY:	4	AL		
DATE:	31	2072		

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK SAMPLE ID: 022322-SOIL LAB NO: 228953 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 01:00 BATCH NO: 022222S1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	1.54	ND
CHLOROMETHANE	74-87-3	1.54	ND
VINYL CHLORIDE	75-01-4	1.54	ND
BROMOMETHANE	74-83-9	1.54	ND
CHLOROETHANE	75-00-3	1.54	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.54	ND
1,1-DICHLOROETHENE	75-35-4	1.54	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.54	ND
METHYLENE CHLORIDE	75-09-2	7.68	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.54	ND
1,1-DICHLOROETHANE	75-34-3	1.54	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.54	ND
2,2-DICHLOROPROPANE	594-20-7	1.54	ND
BROMOCHLOROMETHANE	74-97-5	1.54	ND
CHLOROFORM	67-66-3	1.54	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.54	ND
CARBON TETRACHLORIDE	56-23-5	1.54	ND
1.1-DICHLOROPROPENE	563-58-6	1.54	ND
BENZENE	71-43-2	1.54	ND
1,2-DICHLOROETHANE	107-06-2	1.54	5.24
TRICHLOROETHENE	79-01-6	1.54	ND
1,2-DICHLOROPROPANE	78-87-5	1.54	ND
DIBROMOMETHANE	74-95-3	1.54	ND
BROMODICHLOROMETHANE	75-27-4	1.54	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.54	ND
TOLUENE	108-88-3	1.54	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.54	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.54	ND
TETRACHLOROETHENE	127-18-4	1.54	ND
	142-28-9	1.54	ND
	and the second se	1.54	ND
	124-48-1	1.54	ND
	106-93-4	1.54	ND
	108-90-7		
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.54	ND
	100-41-4	1.54	ND
XYLENE (M+P)	1330-20-7	1.54	ND
XYLENE (O)	1330-20-7	1.54	ND
STYRENE	100-42-5	1.54	ND
BROMOFORM	75-25-2	1.54	ND
ISOPROPYLBENZENE	98-82-8	1.54	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.54	ND
BROMOBENZENE	108-86-1	1.54	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.54	ND
N-PROPYLBENZENE	103-65-1	1.54	ND

K PRIME PROJECT: 9946

CLIENT PROJECT:

SAMPLE ID: 022322-SOIL LAB NO: 228953 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 01:00 BATCH NO: 022222S1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS **REFERENCE: EPA 5035/8260**

REGIS.HAYWARDPARK; WO 21.02 TASK

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.54	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.54	ND
4-CHLOROTOLUENE	106-43-4	1.54	ND
TERT-BUTYLBENZENE	98-06-6	1.54	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.54	ND
SEC-BUTYLBENZENE	135-98-8	1.54	ND
1,3-DICHLOROBENZENE	541-73-1	1.54	ND
4-ISOPROPYLTOLUENE	99-87-6	1.54	ND
1,4-DICHLOROBENZENE	106-46-7	1.54	ND
N-BUTYLBENZENE	104-51-8	1.54	ND
1,2-DICHLOROBENZENE	95-50-1	1.54	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.54	ND
1,2,4-TRICHLOROBENZENE	120-82-1	3.07	ND
HEXACHLOROBUTADIENE	87-68-3	3.07	ND
NAPHTHALENE	91-20-3	3.07	ND
1,2,3-TRICHLOROBENZENE	87-61-6	3.07	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	94
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	101

NOTES:

APPROVED BY: DATE: _____

METHOD BLANK ID: B021122S1 BATCH NO: 021122S1 DATE ANALYZED: 02/11/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC			
DICHLORODIFLUOROMETHANE	75-71-8	1.25	ND			
CHLOROMETHANE	74-87-3	1.25	ND			
VINYL CHLORIDE	75-01-4	1.25	ND			
BROMOMETHANE	74-83-9	1.25	ND			
CHLOROETHANE	75-00-3	1.25	ND			
TRICHLOROFLUOROMETHANE	75-69-4	1.25	ND			
1,1-DICHLOROETHENE	75-35-4	1.25	ND			
TRICHLOROTRIFLUOROETHANE	76-13-1	1.25	ND			
METHYLENE CHLORIDE	75-09-2	6.25	ND			
TRANS-1,2-DICHLOROETHENE	156-60-5	1.25	ND			
1,1-DICHLOROETHANE	75-34-3	1.25	ND			
CIS-1,2-DICHLOROETHENE	156-59-2	1.25	ND			
2,2-DICHLOROPROPANE	594-20-7	1.25	ND			
BROMOCHLOROMETHANE	74-97-5	1.25	ND			
CHLOROFORM	67-66-3	1.25	ND			
1,1,1-TRICHLOROETHANE	71-55-6	1.25	ND			
CARBON TETRACHLORIDE	56-23-5	1.25	ND			
1,1-DICHLOROPROPENE	563-58-6	1.25	ND			
BENZENE	71-43-2	1.25	ND			
1,2-DICHLOROETHANE	107-06-2	1.25	ND			
TRICHLOROETHENE	79-01-6	1.25	ND			
1,2-DICHLOROPROPANE	78-87-5	1.25	ND			
DIBROMOMETHANE	74-95-3	1.25	ND			
BROMODICHLOROMETHANE	75-27-4	1.25	ND			
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.25	ND			
TOLUENE	108-88-3	1.25	ND			
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.25	ND			
1,1,2-TRICHLOROETHANE	79-00-5	1.25	ND			
TETRACHLOROETHENE	127-18-4	1.25	ND			
1,3-DICHLOROPROPANE	142-28-9	1.25	ND			
DIBROMOCHLOROMETHANE	124-48-1	1.25	ND			
1,2-DIBROMOETHANE	106-93-4	1.25	ND			
CHLOROBENZENE	108-90-7	1.25	ND			
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.25	ND			
ETHYLBENZENE	100-41-4	1.25	ND			
XYLENE (M+P)	1330-20-7	1.25	ND			
XYLENE (O)	1330-20-7	1.25	ND			
STYRENE	100-42-5	1.25	ND			
BROMOFORM	75-25-2	1.25	ND			
ISOPROPYLBENZENE	98-82-8	1.25	ND			
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.25	ND			
BROMOBENZENE	108-86-1	1.25	ND			
1,2,3-TRICHLOROPROPANE	96-18-4	1.25	ND			
N-PROPYLBENZENE	103-65-1	1.25	ND			
2-CHLOROTOLUENE	95-49-8	1.25	ND			

METHOD BLANK ID: B021122S1 BATCH NO: 021122S1 DATE ANALYZED: 02/11/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
1,3,5-TRIMETHYLBENZENE	108-67-8	1.25	ND
4-CHLOROTOLUENE	106-43-4	1.25	ND
TERT-BUTYLBENZENE	98-06-6	1.25	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.25	ND
SEC-BUTYLBENZENE	135-98-8	1.25	ND
1,3-DICHLOROBENZENE	541-73-1	1.25	ND
4-ISOPROPYLTOLUENE	99-87-6	1.25	ND
1,4-DICHLOROBENZENE	106-46-7	1.25	ND
N-BUTYLBENZENE	104-51-8	1.25	ND
1,2-DICHLOROBENZENE	95-50-1	1.25	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.25	ND
1,2,4-TRICHLOROBENZENE	120-82-1	2.50	ND
HEXACHLOROBUTADIENE	87-68-3	2.50	ND
NAPHTHALENE	91-20-3	2.50	ND
1,2,3-TRICHLOROBENZENE	87-61-6	2.50	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	92
TOLUENE-D8	101
4-BROMOFLUOROBENZENE	98

NOTES:

K PRIME, INC.

LABORATORY BATCH QC REPORT

SAMPLE ID: B021122S1 SPIKE ID: L021122S1 DUPLICATE ID: D021122S1 BATCH NO: 021122S1 DATE ANALYZED: 02/11/2022 SAMPLE TYPE: SOIL UNITS: µg/Kg

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	30.0	ND	19.9	66	60-140
BENZENE	30.0	ND	21.0	70	60-140
TRICHLOROETHENE	30.0	ND	22.1	74	60-140
TOLUENE	30.0	ND	22.4	75	60-140
CHLOROBENZENE	30.0	ND	20.9	70	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	ND NAME REPORTING SPIKE DUPLICAT			RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	1.25	19.9	19.8	0.7	±20
BENZENE	1.25	21.0	20.8	1.2	±20
TRICHLOROETHENE	1.25	22.1	21.9	0.9	±20
TOLUENE	1.25	22.4	22.0	1.9	±20
CHLOROBENZENE	1.25	20.9	20.4	2.6	±20

NOTES:

EPORT METHOD BLANK ID: B022222S1 BATCH NO: 022222S1

BATCH NO: 022222S1 DATE ANALYZED: 02/22/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

COMPOUND NAME	CAS NO.		SAMPLE CONC			
DICHLORODIFLUOROMETHANE	75-71-8	1.25	ND			
CHLOROMETHANE	74-87-3	1.25	ND			
VINYL CHLORIDE	75-01-4	1.25	ND			
BROMOMETHANE	74-83-9	1.25	ND			
CHLOROETHANE	75-00-3	1.25	ND			
TRICHLOROFLUOROMETHANE	75-69-4	1.25	ND			
1,1-DICHLOROETHENE	75-35-4	1.25	ND			
TRICHLOROTRIFLUOROETHANE	76-13-1	1.25	ND			
METHYLENE CHLORIDE	75-09-2	6.25	ND			
TRANS-1,2-DICHLOROETHENE	156-60-5	1.25	ND			
1,1-DICHLOROETHANE	75-34-3	1.25	ND			
CIS-1,2-DICHLOROETHENE	156-59-2	1.25	ND			
2,2-DICHLOROPROPANE	594-20-7	1.25	ND			
BROMOCHLOROMETHANE	74-97-5	1.25	ND			
CHLOROFORM	67-66-3	1.25	ND			
1,1,1-TRICHLOROETHANE	71-55-6	1.25	ND			
CARBON TETRACHLORIDE	56-23-5	1.25	ND			
1,1-DICHLOROPROPENE	563-58-6	1.25	ND			
BENZENE	71-43-2	1.25	ND			
1,2-DICHLOROETHANE	107-06-2	1.25	ND			
TRICHLOROETHENE	79-01-6	1.25	ND			
1.2-DICHLOROPROPANE	78-87-5	1.25	ND			
DIBROMOMETHANE	74-95-3	1.25	ND			
BROMODICHLOROMETHANE	75-27-4	1.25	ND			
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.25	ND			
TOLUENE	108-88-3	1.25	ND			
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.25	ND			
1,1,2-TRICHLOROETHANE	79-00-5	1.25	ND			
TETRACHLOROETHENE	127-18-4	1.25	ND			
1,3-DICHLOROPROPANE	142-28-9	1.25	ND			
DIBROMOCHLOROMETHANE	124-48-1	1.25	ND			
1,2-DIBROMOETHANE	106-93-4	1.25	ND			
CHLOROBENZENE	108-90-7	1.25	ND			
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.25	ND			
ETHYLBENZENE	100-41-4	1.25	ND			
XYLENE (M+P)	1330-20-7	1.25	ND			
XYLENE (O)	1330-20-7	1.25	ND			
STYRENE	100-42-5	1.25	ND			
BROMOFORM	75-25-2	1.25	ND			
ISOPROPYLBENZENE	98-82-8	1.25	ND			
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.25	ND			
BROMOBENZENE	108-86-1	1.25	ND			
1,2,3-TRICHLOROPROPANE	96-18-4	1.25	ND			
N-PROPYLBENZENE	103-65-1	1.25	ND			
2-CHLOROTOLUENE	95-49-8	1.25	ND			

METHOD BLANK ID: B022222S1 BATCH NO: 022222S1 DATE ANALYZED: 02/22/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

SAMPLE TYPE: SOIL UNITS: µg/Kg

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
1,3,5-TRIMETHYLBENZENE	108-67-8	1.25	ND
4-CHLOROTOLUENE	106-43-4	1.25	ND
TERT-BUTYLBENZENE	98-06-6	1.25	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.25	ND
SEC-BUTYLBENZENE	135-98-8	1.25	ND
1,3-DICHLOROBENZENE	541-73-1	1.25	ND
4-ISOPROPYLTOLUENE	99-87-6	1.25	ND
1,4-DICHLOROBENZENE	106-46-7	1.25	ND
N-BUTYLBENZENE	104-51-8	1.25	ND
1,2-DICHLOROBENZENE	95-50-1	1.25	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.25	ND
1,2,4-TRICHLOROBENZENE	120-82-1	2.50	ND
HEXACHLOROBUTADIENE	87-68-3	2.50	ND
NAPHTHALENE	91-20-3	2.50	ND
1,2,3-TRICHLOROBENZENE	87-61-6	2.50	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	96
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	92

NOTES:

SAMPLE ID: B022222S1 SPIKE ID: L022222S1 DUPLICATE ID: D022222S1 BATCH NO: 022222S1 DATE ANALYZED: 02/22/2022 SAMPLE TYPE: SOIL UNITS: µg/Kg

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5035/8260

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	30.0	ND	23.5	78	60-140
BENZENE	30.0	ND	25.2	84	60-140
TRICHLOROETHENE	30.0	ND	23.7	79	60-140
TOLUENE	30.0	ND	25.1	84	60-140
CHLOROBENZENE	30.0	ND	24.0	80	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	1.25	23.5	23. 9	1.4	±20
BENZENE	1.25	25.2	25.3	0.7	±20
TRICHLOROETHENE	1.25	23.7	23.8	0.5	±20
TOLUENE	1.25	25.1	25.2	0.5	±20
CHLOROBENZENE	1.25	24.0	24.5	1.8	±20

NOTES:

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CUSTODY

Inve	oice to: WEST, I	nc.						Date:	2/2	3/2	2	Page	e of	1		_		
Pro	ject: Regis.Haywa	ardPark; WO 2	1.02 Task 2	2				Locatio	on: 4	01 C	onca	r Dr.	, San	Ma	teo, (CA	_	_
Pro	ject Manager:Sha	aron Squire, Wl	EST, Inc.		_			Phone:	415	/460	-677()	_	Fa	ax: 4	15/46	50-67	71
	oratory: KPrime			_				Turn			1	2	3	5	7	10	Std.	
San	pler Signature:	Ma	h	ha				time	(day	rs)	Ana	lyses	Rea	ueste	ed be		X	-
-		9000											1.04					Γ
	Sample ID	KPI #	Date	Time	Type	# Containers	Composite	VOCs including naphthalene (5035/8260B)	Encore Sample Preparation	EDF								HOLD
	W-25-0.5'	22.8941	423/22	0940	9	1	/	X	x	x								
	W-25-3'	228942	2/23/22	6955	ς	1	-	X	x	x								
	W-25-6'	228943	2/23/27	1002	5	{		X	x	X								
	W-25-10'	228944	2/23/22		5	1	-	X	x	x								
	W-26-0.5'	228945	2/23/2	1008	5	I	1	X	X	x								
	W-26-3'	228946	2/23/22	lozy	5	L	1	X	X	x	1							
	W-26-6'	228947	2/23/2	633	5	1	1	X	x	x								
	W-26-10'	228948	2/23/22	1053	5		1	X	x	x								
4	W-27-0.5; Ale	228949	2/22/2	010	5	1	~	x	x	x								
	W-27-3'	228950	2/23/2-	0900	5	1	~	X	x	x								
	W-27-6'	228957	2/23/22		5	1	-	x	x	x								
	W-27-10'	228952	2/23/12	0930	5	1	~	X	x	x								
	022322-soil	228953	2/23/22		5	I	-	x	X	X							Ì	
NO	TES: Dispose afte	er 30-days							X		2	Log	Code	:	W	'ESS		
									Gloł	oal II	D:	T10	0000	0860	4			
	inquished by: (Sign	nature)		2/22/	Date/1		Ş	Received by: (Signature)		Date/Time 2-3-2? /3.05								
Rel	inquished by: (Sig	nature)			Date/T	Time	78	F	Receiv	ved b	y: (S	en	ure) KI	or	2,1		/Time 3/2 38	_

wa

LABORATORY TEST REPORT

ACCT: 9946

TO: MS. SHARON SQUIRE WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

> Phone: 415-460-6770 Email: main estenvironmental.com

FROM: Richard A. Kagel, Ph.D. RMK 3/4/2022 Laboratory Director

SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

The following samples were received at our laboratory on February 25, 2022.

SAMPLE ID	ТҮРЕ	DATE	TIME	KPI LAB #
W-28-4'	AIR	2/25/2022	10:41	229084
W-29-4'	AIR	2/25/2022	9:44	229085
W-30-4'	AIR	2/25/2022	8:53	229086
W-32-4'	AIR	2/24/2022	15:47	229087
W-34-4'	AIR	2/24/2022	11:15	229088
W-35-4'	AIR	2/24/2022	14:08	229089
W-36-2.5'	AIR	2/24/2022	14:53	229090
W-37-4'	AIR	2/25/2022	7:50	229091
022522-4'	AIR	2/25/2022	1:00	229092

Test results included in this report meet the requirements of ISO/IEC 17025:2017 as verified by the ANSI-ASQ National Accreditation Board (ANAB), and/or the requirements of the California Environmental Laboratory Accreditation Program (CA-ELAP), as applicable. Refer to certificates and scopes of accreditation AT-1427 (ANAB) and CA-ELAP #1532.

Results relate only to the samples tested. This test report shall not be reproduced except in full, without written permission of the laboratory.

If there are questions or concerns regarding this report, please contact your laboratory representative.

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

W-28-4' 229084 AIR 2/25/2022 10:41 022422A1 3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	4.14	2.07	8.55
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	2.52	2.64	6.65
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1 1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1 1 1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	89.2	3.19	285
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1 3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	32.4	3.77	122
1 1 2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	ND	6.78	ND
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	22.0	4.34	95.4
XYLENE M+P	179601-23-1	2.00	81.3	8.68	353
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE O	95-47-6	1.00	43.3	4.34	188
1 1 2 2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1 3 5-TRIMETHYLBENZENE	108-67-8	1.00	48.1	4.92	237
1 2 4-TRIMETHYLBENZENE	95-63-6	1.00	124	4.92	611
1 3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1 2 4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND ND
NAPHTHALENE	91-20-3	1.00	29.3	5.24	154
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID: LAB NO: SAMPLE TYPE: DATE SAMPLED: TIME SAMPLED: BATCH ID: DATE ANALYZED:

W-29-4' 229085 AIR 2/25/2022 9:44 022422A1 3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

	19	PPB (V/V)		µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1.1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1.1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1,1 1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	45.2	3.19	145
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1.2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	41.2	3.77	155
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1.2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	ND	6,78	ND
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	10.6	4.34	46.0
XYLENE M+P	179601-23-1	2.00	17.0	8.68	73.8
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE O	95-47-6	1.00	9,90	4.34	43.0
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	43.0 ND
1.3.5-TRIMETHYLBENZENE	108-67-8	1.00	1.13	4.92	5.56
1.2.4-TRIMETHYLBENZENE	95-63-6	1.00	2.59	4.92	12.7
1 3-DICHLOROBENZENE	541-73-1	1.00	2.59 ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE			ND		ND
1.2 4-TRICHLOROBENZENE	95-50-1 120-82-1	1.00	ND	6.01 7.42	ND
1,2 4-TRICHLOROBENZENE	91-20-3	1.00	1.30	5.24	6.81
HEXACHLOROBUTADIENE	87-68-3	1.00	1.30 ND	10.7	ND
ILLAGELOROBUTADIENE	01-00-3	1.00	NU	10.7	טא

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID:
LAB NO:
SAMPLE TYPE:
DATE SAMPLED:
TIME SAMPLED:
BATCH ID:
DATE ANALYZED:

W-30-4' 229086 AIR 2/25/2022 08:53 022422A1 3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1 1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1.1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	10.7	3.19	34.0
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	10.1	3.77	38.2
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	ND	6.78	ND
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND ND
ETHYLBENZENE	100-41-4	1.00	31.8	4.80	138
XYLENE M+P	179601-23-1	2.00	24.1	8.68	105
STYRENE	100-42-5	1.00	24.1	4.26	ND
XYLENE O	95-47-6	1.00			
			24.9	4.34	108
1 1 2 2-TETRACHLOROETHANE 1 3 5-TRIMETHYLBENZENE	79-34-5	1.00	ND 1.46	6.87	ND
	108-67-8	1.00	4.46	4.92	21.9
	95-63-6	1.00	5.64	4.92	27.7
1 3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1.2.4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
NAPHTHALENE	91-20-3	1.00	5.67	5.24	29.7
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID:
LAB NO:
SAMPLE TYPE:
DATE SAMPLED:
TIME SAMPLED:
BATCH ID:
DATE ANALYZED:

W-32-4'

229087 AIR

2/24/2022

15:47 022422A1

3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1 1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1.1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	34.6	3.19	111
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	2.01	4.62	9.29
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	NÐ
FRANS-1 3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
FOLUENE	108-88-3	1,00	89.0	3.77	335
1 1 2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	NÐ
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	ND	6.78	NÐ
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	27.0	4.34	117
(YLENE M+P)	179601-23-1	2.00	51.8	8.68	225
STYRENE	100-42-5	1.00	ND	4.26	ND
(YLENE (O)	95-47-6	1.00	22.2	4.34	96.5
1 1 2 2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1 3 5-TRIMETHYLBENZENE	108-67-8	1.00	27.9	4.92	137
1 2 4-TRIMETHYLBENZENE	95-63-6	1.00	41.6	4.92	204
1 3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1 2 4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
NAPHTHALENE	91-20-3	1.00	1.98	5.24	10.4
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

W-34-4'

229088 AIR

2/24/2022

11:15 022422A1

3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	10.0	ND	49.5	ND
CHLOROMETHANE	74-87-3	10.0	ND	20.7	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	10.0	ND	69.9	ND
VINYL CHLORIDE	75-01-4	10.0	38,1	25.6	97.3
BROMOMETHANE	74-83-9	10.0	ND	38.8	ND
CHLOROETHANE	75-00-3	10.0	71.1	26.4	188
TRICHLOROFLUOROMETHANE	75-69-4	10.0	ND	56.2	ND
1 1-DICHLOROETHENE	75-35-4	10.0	70.0	39.7	277
TRICHLOROTRIFLUOROETHANE	76-13-1	10.0	ND	76.6	ND
METHYLENE CHLORIDE	75-09-2	10.0	ND	34.7	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	10.0	27.4	39.6	109
1 1-DICHLOROETHANE	75-34-3	10.0	ND	40.5	ND
CIS-1 2-DICHLOROETHENE	156-59-2	10.0	11,3	39.7	44.8
CHLOROFORM	67-66-3	10.0	ND	48.8	ND
1.1.1-TRICHLOROETHANE	71-55-6	10.0	ND	54.6	ND
1 2-DICHLOROETHANE	107-06-2	10.0	441	40.5	1780
BENZENE	71-43-2	10.0	84.8	31.9	271
CARBON TETRACHLORIDE	56-23-5	10.0	ND	62.9	ND
1 2-DICHLOROPROPANE	78-87-5	10.0	ND	46.2	ND
TRICHLOROETHENE	79-01-6	10.0	19.1	53.7	103
CIS-1 3-DICHLOROPROPENE	10061-01-5	10.0	ND	45.4	ND
TRANS-1 3-DICHLOROPROPENE	10061-02-6	10.0	ND	45.4	ND
TOLUENE	108-88-3	10.0	43.0	37.7	162
1.1.2-TRICHLOROETHANE	79-00-5	10.0	ND	54.6	ND
1 2-DIBROMOETHANE	106-93-4	10.0	ND	76.8	ND
TETRACHLOROETHENE	127-18-4	10.0	ND	67.8	ND
CHLOROBENZENE	108-90-7	10.0	ND	46.0	ND
ETHYLBENZENE	100-41-4	10.0	28.5	43.4	124
XYLENE M+P	179601-23-1	20.0	ND	86.8	ND
STYRENE	100-42-5	10.0	ND	42.6	ND
XYLENE O	95-47-6	10.0	ND	43.4	ND
1 1 2 2-TETRACHLOROETHANE	79-34-5	10.0	ND	68.7	ND
1 3 5-TRIMETHYLBENZENE	108-67-8	10.0	ND	49.2	ND
1 2 4-TRIMETHYLBENZENE	95-63-6	10.0	ND	49.2	ND
1 3-DICHLOROBENZENE	541-73-1	10.0	ND	<u>49.2</u> 60.1	ND
1 4-DICHLOROBENZENE	106-46-7	10.0	ND	60.1	ND
1 2-DICHLOROBENZENE					
1 2 4-TRICHLOROBENZENE	95-50-1	10.0	ND	60.1	ND
124-TRICHLOROBENZENE	120-82-1	10.0	ND	74.2	ND
HEXACHLOROBUTADIENE	91-20-3 87-68-3	10.0	ND ND	52.4	ND
INEXAGELOROBUTADIENE	87-08-3	10.0	ND	107	ND

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

W-35-4'

229089 AIR

2/24/2022

14:08 022422A1

3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	5.20	2.64	13.7
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1 1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1.1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1,00	5.29	3.19	16.9
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1 3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	15.5	3.77	58.6
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1,00	ND	6.78	ND
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	2.11	4.34	9,16
XYLENE (M+P)	179601-23-1	2.00	5.08	8.68	22.1
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE (O)	95-47-6	1.00	1.49	4.34	6.47
1 1 2 2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1 3 5-TRIMETHYLBENZENE	108-67-8	1.00	ND	4.92	ND
1 2 4-TRIMETHYLBENZENE	95-63-6	1.00	1.11	4.92	5.46
1 3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1 2 4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
NAPHTHALENE	91-20-3	1.00	ND	5.24	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

W-36-2.5' 229090 AIR 2/24/2022 14:53 022422A1 3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

COMPOUND NAME	CAS NO.	PPB (V/V)		μg/cu. m	
		RL	SAMPLE CONC	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1.1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3,96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4,88	ND
1 1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	3.24	3,19	10,4
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1 3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	15.3	3.77	57.7
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	ND	6.78	ND
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	1.29	4.34	5.60
XYLENE (M+P)	179601-23-1	2.00	3.10	8.68	13.5
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE O	95-47-6	1.00	ND	4.34	ND
1 1 2 2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	1.00	ND	4.92	ND
1 2 4-TRIMETHYLBENZENE	95-63-6	1.00	ND	4.92	ND
1 3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1 2 4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
NAPHTHALENE	91-20-3	1.00	ND	5.24	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND
	07-00-3	1.00	NU	10.7	NU

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID: LAB NO: SAMPLE TYPE: DATE SAMPLED: TIME SAMPLED: BATCH ID: DATE ANALYZED: W-37-4' 229091 AIR 2/25/2022 07:50 022422A1 3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		μg/cu. m	
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	ND	2.07	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	ND	2.64	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	NÐ	5.62	ND
1 1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1.2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1.1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	3.27	3.19	10,4
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	10.3	3.77	38.7
1 1 2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	38.7 ND
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	
TETRACHLOROETHENE	127-18-4	1.00	ND	6.78	ND ND
CHLOROBENZENE	108-90-7	1.00	ND		ND
ETHYLBENZENE	_	1.00		4.60	
XYLENE M+P	100-41-4 179601-23-1	2.00	1.41 ND	4.34	6.12
and the second se				8.68	ND
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE O	95-47-6	1.00	ND	4.34	ND
1 1 2 2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1.3.5-TRIMETHYLBENZENE	108-67-8	1.00	ND	4.92	ND
1 2 4-TRIMETHYLBENZENE	95-63-6	1.00	ND	4.92	ND
1.3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1 2 4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
NAPHTHALENE	91-20-3	1.00	ND	5.24	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT RL - REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE µg/cu. m VALUES ARE CALCULATED FROM PPB RESULTS USING NORMAL TEMPERATURE AND PRESSURE (NPT).

APPROVED BY: DATE:

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID:	
LAB NO:	
SAMPLE TYPE:	
DATE SAMPLED:	
TIME SAMPLED:	
BATCH ID:	
DATE ANALYZED:	

022522-4'

229092 AIR

2/25/2022

01:00 022422A1

3/2/2022

METHOD: VOCS IN AIR

REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

		PPB (V/V)		µg/cu. m	
	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND	4.95	ND
CHLOROMETHANE	74-87-3	1.00	4.10	2.07	8.47
DICHLOROTETRAFLUOROETHANE	76-14-2	1.00	ND	6.99	ND
VINYL CHLORIDE	75-01-4	1.00	ND	2.56	ND
BROMOMETHANE	74-83-9	1.00	ND	3.88	ND
CHLOROETHANE	75-00-3	1.00	2.40	2.64	6.33
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND	5.62	ND
1 1-DICHLOROETHENE	75-35-4	1.00	ND	3.97	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND	7.66	ND
METHYLENE CHLORIDE	75-09-2	1.00	ND	3.47	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	1.00	ND	3.96	ND
1 1-DICHLOROETHANE	75-34-3	1.00	ND	4.05	ND
CIS-1 2-DICHLOROETHENE	156-59-2	1.00	ND	3.97	ND
CHLOROFORM	67-66-3	1.00	ND	4.88	ND
1.1.1-TRICHLOROETHANE	71-55-6	1.00	ND	5.46	ND
1 2-DICHLOROETHANE	107-06-2	1.00	ND	4.05	ND
BENZENE	71-43-2	1.00	88.5	3.19	283
CARBON TETRACHLORIDE	56-23-5	1.00	ND	6.29	ND
1 2-DICHLOROPROPANE	78-87-5	1.00	ND	4.62	ND
TRICHLOROETHENE	79-01-6	1.00	ND	5.37	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	1.00	ND	4.54	ND
TRANS-1 3-DICHLOROPROPENE	10061-02-6	1.00	ND	4.54	ND
TOLUENE	108-88-3	1.00	31.7	3.77	119
1.1.2-TRICHLOROETHANE	79-00-5	1.00	ND	5.46	ND
1 2-DIBROMOETHANE	106-93-4	1.00	ND	7.68	ND
TETRACHLOROETHENE	127-18-4	1.00	ND	6.78	ND
CHLOROBENZENE	108-90-7	1.00	ND	4.60	ND
ETHYLBENZENE	100-41-4	1.00	21.3	4.34	92.4
XYLENE (M+P)	179601-23-1	2.00	79.2	8.68	344
STYRENE	100-42-5	1.00	ND	4.26	ND
XYLENE O	95-47-6	1.00	42.2	4.34	183
1 1 2 2-TETRACHLOROETHANE	79-34-5	1.00	ND	6.87	ND
1 3 5-TRIMETHYLBENZENE	108-67-8	1.00	46.8	4.92	230
1 2 4-TRIMETHYLBENZENE	95-63-6	1.00	123	4.92	604
1.3-DICHLOROBENZENE	541-73-1	1.00	ND	6.01	ND
1 4-DICHLOROBENZENE	106-46-7	1.00	ND	6.01	ND
1 2-DICHLOROBENZENE	95-50-1	1.00	ND	6.01	ND
1 2 4-TRICHLOROBENZENE	120-82-1	1.00	ND	7.42	ND
NAPHTHALENE	91-20-3	1.00	33.5	5.24	175
HEXACHLOROBUTADIENE	87-68-3	1.00	ND	10.7	ND

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT RL - REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE µg/cu. m VALUES ARE CALCULATED FROM PPB RESULTS USING NORMAL TEMPERATURE AND PRESSURE (NPT).

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

METHOD: HELIUM REFERENCE: ASTM D 1946 SAMPLE TYPE: AIR UNITS: %-V

SAMPLE 1D	LAB NO	BATCH	DATE	TIME	DATE	MRL	SAMPLE
		NO	SAMPLED	SAMPLED	ANALYZED		CONC
W-28-4'	229084	022822A3	02/25/2022	10:41	02/28/2022	0.100	ND
W-29-4'	229085	022822A3	02/25/2022	09:44	02/28/2022	0.100	ND
W-30-4'	229086	022822A3	02/25/2022	08:53	02/28/2022	0.100	ND
W-32-4'	229087	022822A3	02/24/2022	15:47	02/28/2022	0.100	ND
W-34-4'	229088	022822A3	02/24/2022	11:15	02/28/2022	0.150	ND
W-35-4'	229089	022822A3	02/24/2022	14:08	02/28/2022	0.100	ND
W-36-2.5'	229090	022822A3	02/24/2022	14:53	02/28/2022	0.100	ND
W-37-4'	229091	022822A3	02/25/2022	07:50	02/28/2022	0.100	ND

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE MRL - METHOD REPORTING LIMIT

3/2/22 APPROVED BY: _____ DATE: ___

K PRIME, INC.	SAMPLE ID: W-28-4
LABORATORY REPORT	LAB NO: 229084
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/25/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 10:41
	DATE ANALYZED: 03/01/2022

METHOD: METHANE, OXYGEN REFERENCE: ASTM D 1946 SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	0.357
OXYGEN	1.00	19.4

NOTES:

APPROVED BY: _ DATE: _ 33/22

K PRIME, INC.	SAMPLE ID: W-29-4'
LABORATORY REPORT	LAB NO: 229085
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/25/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 09:44
	DATE ANALYZED: 03/01/2022
METHOD: METHANE. OXYGEN	SAMPLE TYPE: AIR
	LINUTO, 0/ \/

REFERENCE: ASTM D 1946

UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	0.235
OXYGEN	1.00	12.0

NOTES:

3/3/22 APPROVED BY: _____ DATE: ____

K PRIME, INC.	SAMPLE ID: W-30-4'
LABORATORY REPORT	LAB NO: 229086
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/25/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 08:53
	DATE ANALYZED: 03/01/2022
METHOD: METHANE, OXYGEN	SAMPLE TYPE: AIR

REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	26.8
OXYGEN	1.00	5.12

NOTES:

3/3/22 APPROVED BY: _____ DATE: ____

K PRIME, INC.	SAMPLE ID: W-32-4'
LABORATORY REPORT	LAB NO: 229087
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/24/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 15:47
	DATE ANALYZED: 03/01/2022
METHOD: METHANE. OXYGEN	SAMPLE TYPE: AIR

METHOD: METHANE, OXYGEN REFERENCE: ASTM D 1946 SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	5.23
OXYGEN	1.00	14.7

NOTES:

APPROVED BY: DATE: 3/22

K PRIME, INC.	SAMPLE ID: W-34-4'
LABORATORY REPORT	LAB NO: 229088
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/24/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 11:15
	DATE ANALYZED: 03/01/2022
METHOD, METHANE OVVCEN	SAMPLE TYPE: AIR

METHOD: METHANE, OXYGEN REFERENCE: ASTM D 1946 SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.150	25.7
OXYGEN	1.50	10.6

NOTES:

APPROVED BY: DATE: 3/3/2Z

K PRIME, INC.	SAMPLE ID: W-35-4'
LABORATORY REPORT	LAB NO: 229089
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/24/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 14:08
	DATE ANALYZED: 03/01/2022
METHOD: METHANE, OXYGEN	SAMPLE TYPE: AIR

REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	ND
OXYGEN	1.00	21.5

NOTES:

APPROVED BY: DATE: 3/3/22

K PRIME, INC.	SAMPLE ID: W-36-2.5'
LABORATORY REPORT	LAB NO: 229090
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/24/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 14:53
	DATE ANALYZED: 03/01/2022
	SAMPLE TYPE: AIR

METHOD: METHANE, OXYGEN REFERENCE: ASTM D 1946 SAMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	1.38
OXYGEN	1.00	14.7

NOTES:

APPROVED BY: DATE: 3/3/22

K PRIME, INC.	SAMPLE ID: W-37-4'
LABORATORY REPORT	LAB NO: 229091
	BATCH NO: 030122A2
K PRIME PROJECT: 9946	DATE SAMPLED: 02/25/2022
CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2	TIME SAMPLED: 07:50
	DATE ANALYZED: 03/01/2022
METHOD: METHANE, OXYGEN	SAMPLE TYPE: AIR

REFERENCE: ASTM D 1946

AMPLE TYPE: AIR UNITS: %-V

COMPOUND NAME	REPORTING LIMIT	SAMPLE CONC
METHANE	0.100	6.32
OXYGEN	1.00	5.44

NOTES:

APPROVED BY: 3/3/22 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

METHOD: CARBON DIOXIDE REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

SAMPLE ID	LAB NO.	DATE	TIME	BATCH	DATE	MRL	SAMPLE
		SAMPLED	SAMPLED	NO	ANALYZED		CONC
W-28-4'	229084	02/25/2022	10:41	022822A2	2/28/2022	0.100	0.251
W-29-4'	229085	02/25/2022	09:44	022822A2	2/28/2022	0.100	4.11
W-30-4'	229086	02/25/2022	08:53	022822A2	2/28/2022	0.100	ND
W-32-4'	229087	02/24/2022	15:47	022822A2	2/28/2022	0.100	ND
W-34-4'	229088	02/24/2022	11:15	022822A2	2/28/2022	0.150	4.76
W-35-4'	229089	02/24/2022	14:08	022822A2	2/28/2022	0.100	0.839
W-36-2.5'	229090	02/24/2022	14:53	022822A2	2/28/2022	0.100	0.595
W-37-4'	229091	02/25/2022	07:50	022822A2	2/28/2022	0.100	0.869

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE MRL - METHOD REPORTING LIMIT

3/2/22 APPROVED BY: DATE:

SUMMA PRESSURE MEASURED UPON SAMPLE RECEIPT

K PRIME PROJECT: 9946

CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

LAB NO.	SAMPLE ID	DATE REC'D	DATE TESTED	PRESSURE
229084	W-28-4'	2/25/2022	2/28/2022	-4
229085	W-29-4'	2/25/2022	2/28/2022	-6
229086	W-30-4'	2/25/2022	2/28/2022	-4
229087	W-32-4'	2/25/2022	2/28/2022	-4
229088	W-34-4'	2/25/2022	2/28/2022	-16
229089	W-35-4'	2/25/2022	2/28/2022	-6
229090	W-36-2.5'	2/25/2022	2/28/2022	-3
229091	W-37-4'	2/25/2022	2/28/2022	-3
229092	022522-4'	2/25/2022	2/28/2022	-4

NOTES:

NEGATIVE PRESSURE VALUES ARE IN INHG(INCHES OF MERCURY) POSITIVE PRESSURE VALUES ARE IN PSIG

APPROVED BY: DATE:

K PRIME, INC.

LABORATORY METHOD BLANK REPORT

METHOD BLANK ID: B022422A1 SAMPLE TYPE:

AIR

BATCH ID: 022422A1 DATE ANALYZED: 2/24/2022

.

METHOD: VOCS IN AIR **REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)**

		PPB (V/V)		μg/cu.	m
COMPOUND NAME	CAS NO.	RL	SAMPLE	RL	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND	2.47	ND
CHLOROMETHANE	74-87-3	0.500	ND	1.03	ND
DICHLOROTETRAFLUOROETHANE	76-14-2	0.500	ND	3.50	ND
VINYL CHLORIDE	75-01-4	0.500	ND	1.28	ND
BROMOMETHANE	74-83-9	0.500	ND	1.94	ND
CHLOROETHANE	75-00-3	0.500	ND	1.32	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND	2.81	ND
1 1-DICHLOROETHENE	75-35-4	0.500	ND	1.98	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND	3.83	ND
METHYLENE CHLORIDE	75-09-2	0.500	ND	1.74	ND
TRANS-1 2-DICHLOROETHENE	156-60-5	0.500	ND	1.98	ND
1 1-DICHLOROETHANE	75-34-3	0.500	ND	2.02	ND
CIS-1 2-DICHLOROETHENE	156-59-2	0.500	ND	1.98	ND
CHLOROFORM	67-66-3	0.500	ND	2.44	ND
1.1.1-TRICHLOROETHANE	71-55-6	0.500	ND	2.73	ND
1 2-DICHLOROETHANE	107-06-2	0.500	ND	2.02	ND
BENZENE	71-43-2	0.500	ND	1.60	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND	3.15	ND
1 2-DICHLOROPROPANE	78-87-5	0.500	ND	2.31	ND
TRICHLOROETHENE	79-01-6	0.500	ND	2.69	ND
CIS-1 3-DICHLOROPROPENE	10061-01-5	0.500	ND	2.27	ND
TRANS-1 3-DICHLOROPROPENE	10061-02-6	0.500	ND	2.27	ND
TOLUENE	108-88-3	0.500	ND	1.88	ND
1 1 2-TRICHLOROETHANE	79-00-5	0.500	ND	2.73	ND
1 2-DIBROMOETHANE	106-93-4	0.500	ND	3.84	ND
TETRACHLOROETHENE	127-18-4	0.500	ND	3.39	ND
CHLOROBENZENE	108-90-7	0.500	ND	2.30	ND
ETHYLBENZENE	100-41-4	0.500	ND	2.17	ND
XYLENE (M+P)	179601-23-1	1.00	ND	4.34	ND
STYRENE	100-42-5	0.500	ND	2.13	ND
XYLENE O	95-47-6	0.500	ND	2,17	ND
1 1 2 2-TETRACHLOROETHANE	79-34-5	0.500	ND	3.43	ND
1 3 5-TRIMETHYLBENZENE	108-67-8	0.500	ND	2.46	ND
1 2 4-TRIMETHYLBENZENE	95-63-6	0.500	ND	2.46	ND
1 3-DICHLOROBENZENE	541-73-1	0,500	ND	3.01	ND
1 4-DICHLOROBENZENE	106-46-7	0.500	ND	3.01	ND
1 2-DICHLOROBENZENE	95-50-1	0.500	ND	3.01	ND
1,2,4-TRICHLOROBENZENE	120-82-1	0.500	ND	3.71	ND
NAPHTHALENE	91-20-3	0.500	ND	2.62	ND
HEXACHLOROBUTADIENE	87-68-3	0.500	ND	5.33	ND

NOTES: ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT MRL - METHOD REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE µg/cu. m VALUES ARE CALCULATED FROM PPB RESULTS USING NORMAL TEMPERATURE AND PRESSURE (NPT).

K PRIME, INC. LABORATORY QUALITY CONTROL REPORT

LAB CONTROL ID: L022422A1 LAB CONTROL DUPLICATE ID: D022422A1

SAMPLE TYPE:	AIR
BATCH ID:	022422A1
DATE ANALYZED:	2/24/2022

METHOD: VOCS IN AIR REFERENCE: EPA METHOD TO 15 (GC-MS-SCAN)

COMPOUND NAME	SPIKE ADDED (PPB)	REPORTING LIMIT (PPB)	SAMPLE CONC (PPB)	SPIKE CONC (PPB)	SPIKE REC (%)	REC LIMITS (%)
1,1-DICHLOROETHENE	10.0	0.500	ND	10.8	108	60 - 140
BENZENE	10.0	0.500	ND	9.50	95	60 - 140
TRICHLOROETHENE	10.0	0.500	ND	9.87	99	60 - 140
TOLUENE	10.0	0.500	ND	9.03	90	60 - 140
TETRACHLOROETHENE	10.0	0.500	ND	9.88	99	60 - 140

	SPIKE	SPIKE DUP	SPIKE DUP		QC	LIMITS
COMPOUND NAME	ADDED (PPB)	CONC (PPB)	REC (%)	RPD (%)	RPD (%)	REC (%)
1,1-DICHLOROETHENE	10.0	10.8	108	0.1	25	60 - 140
BENZENE	10.0	9.22	92	3.0	25	60 - 140
TRICHLOROETHENE	10.0	9.93	99	0.6	25	60 - 140
TOLUENE	10.0	9.10	91	0.8	25	60 - 140
TETRACHLOROETHENE	10.0	9.98	100	1.0	25	60 - 140

NOTES:

NA - NOT APPLICABLE OR AVAILABLE

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT

K PRIME, INC.

LABORATORY BATCH QC REPORT

 SAMPLE ID:
 B022822A3

 SPIKE ID:
 L022822A3

 DUPLICATE ID:
 D022822A3

 BATCH NO:
 022822A3

 DATE ANALYZED:
 02/28/2022

SAMPLE TYPE: AIR UNITS: %-V

METHOD: HELIUM REFERENCE: ASTM D 1946

METHOD BLANK

COMPOUND NAME	REPORTING LIMIT	SAMPLE RESULT
HELIUM	0.100	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
HELIUM	ADDED 10.0	RESULT ND	RESULT 9.91	(%) 99	(%) 70-130
TILLION	10.0	NU	0.01		10-100

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
HELIUM	0.100	9.91	10.3	3.9	±20

NOTES:

K PRIME, INC.

LABORATORY BATCH QC REPORT

SAMPLE ID: B030122A2 SPIKE ID: L030122A2 DUPLICATE ID: D030122A2 BATCH NO: 030122A2 DATE ANALYZED: 03/01/2022

METHOD: METHANE, OXYGEN, NITROGEN (BALANCE) REFERENCE: ASTM D 1946

SAMPLE TYPE: AIR UNITS: %-V

METHOD BLANK

	REPORTING LIMIT	SAMPLE RESULT
METHANE	0.0500	ND
OXYGEN	0.500	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE ADDED	SAMPLE RESULT	SPIKE RESULT	RECOVERY (%)	LIMITS (%)
METHANE	50.0	ND	48.1	96	85-115
OXYGEN	10.0	ND	10.4	104	85-115
NITROGEN (BALANCE)	40.0	ND	41.5	104	85-115

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
METHANE	0.0500	48.1	48.4	0.6	±10
OXYGEN	0.500	10.4	10.4	0.0	±10
NITROGEN (BALANCE)	0.500	41.5	41.2	0.7	±10

NOTES:

K PRIME, INC. LABORATORY BATCH QC REPORT

 SAMPLE ID:
 B022822A2

 SPIKE ID:
 L022822A2

 DUPLICATE ID:
 D022822A2

 BATCH NO:
 022822A2

 DATE ANALYZED:
 2/28/2022

SAMPLE TYPE: AIR UNITS: %-V

METHOD: CARBON DIOXIDE REFERENCE: ASTM D 1946

METHOD BLANK

COMPOUND NAME	REPORTING LIMIT	SAMPLE RESULT
CARBON DIOXIDE	0.100	ND

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
CARBON DIOXIDE	1.00	ND	0.968	97	70-130

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
CARBON DIOXIDE	0.100	0.968	0.976	0.8	±20

NOTES:

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CUSTODY

				Date: 2/25/27 Page of / Location: 401 Concar Dr., San Mateo, CA														
Project: Regis.Hay	wardPark; WO 2	1.02 Task 2	2				Loc	ation	: 401	Con	car]	Dr., S	San N	lated	o, CA			
Project Manager:Sharon Squire, WEST, Inc.				Phone: 415/460-6770 Fax: 415/46														
the second se	Laborator : KPrime, Inc, Santa Rosa, CA			Tur		und 1	time	1	2	3	5	7	10	Std.	-			
Sampler Signature:			lela	G	-		⊢	(da	ys)				-		_		X	
	alere			\sim		-			_		Anal	yses	Requ	lester	d	-	_	_
Sample ID	KPI #	Date	Time	Type	# Containers	Composite	VOCs (TO-15)	Helium (ASTM D 1946)	Oxygen, CO2, Methane (RSK 175)	EDF								HOLD
W-28-4'	229084	2/28/22		SG	1		x	х	X	X								
W-29-4'	229085	zpspz		SG	1		x	х	x	х								
W-30-4'	229086	2/25/22	0853	SG	1		x	х	X	х								
W-32-4'	229087	4/24/22	\$47	SG	1		x	х	X	Х								
W-34-4'	229088	2/24/22	1/15	SG	1		х	х	x	х								
W-35-4'	229089	2/24/22	1408	SG	1		x	х	x	х								
W-36-2.5'	229090	2/24/22		SG	1		x	x	x	х								
W-37-4'	229091	2/29/22	0750	SG	1		x	x	x	х								
022522-4'	229092		1.1	SG	1		x			Х								
NOTES: Dispose of	samples after 30-	days						X	EDI	7		Log	Code	<u>.</u> .	V.	'ESS		
								L	al ID		T10	0000				LDD		8
Relinquished by: (Si	on ture)		T	Date/T	ime	-	-	R	eceive	ed by	r (Si	matu	re)	-	-	Date	Time	
alia	filter		2/25/			15		Ĩ	S	A	u	J	2		2/2		22	
Relinquished by: (Sig	gnature)		I	Date/T				R	eceiv	cd-by	. (Sig	gnatu	re)		Date/Time 2/25/22			
54	hund		2/25	22	15	04	K	fel	ly	hy	leu	21	KP1	-	1 1	125	· .	Z

LABORATORY TEST REPORT

ACCT: 9946

TO: MS. SHARON SQUIRE WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

Phone:415-460-6770Email:main@westenvironmental.com

FROM: Richard A. Kagel, Ph.D. RRAK Laboratory Director

3/1/22

SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

The following samples were received at our laboratory on February 25, 2022.

SAMPLE ID	ТҮРЕ	DATE	TIME	KPI LAB #
W-25-12'	WATER	2/23/2022	11:54	229048
W-26-14'	WATER	2/24/2022	12:30	229049
W-27-12'	WATER	2/23/2022	9:35	229050
022322-GRAB	WATER	2/23/2022	2:00	229051

Test results included in this report meet the requirements of ISO/IEC 17025:2017 as verified by the ANSI-ASQ National Accreditation Board (ANAB), and/or the requirements of the California Environmental Laboratory Accreditation Program (CA-ELAP), as applicable. Refer to certificates and scopes of accreditation AT-1427 (ANAB) and CA-ELAP #1532.

Results relate only to the samples tested. This test report shall not be reproduced except in full, without written permission of the laboratory.

If there are questions or concerns regarding this report, please contact your laboratory representative.

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: W-25-12' LAB NO: 229048 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 11:54 BATCH NO: 021622W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	20.0	ND
CHLOROMETHANE	74-87-3	20.0	ND
VINYL CHLORIDE	75-01-4	20.0	ND
BROMOMETHANE	74-83-9	20.0	ND
CHLOROETHANE	75-00-3	20.0	ND
TRICHLOROFLUOROMETHANE	75-69-4	20.0	ND
1,1-DICHLOROETHENE	75-35-4	20.0	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	20.0	ND
METHYLENE CHLORIDE	75-09-2	100	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	20.0	ND
1,1-DICHLOROETHANE	75-34-3	20.0	ND
CIS-1,2-DICHLOROETHENE	156-59-2	20.0	ND
2,2-DICHLOROPROPANE	594-20-7	20.0	ND
BROMOCHLOROMETHANE	74-97-5	20.0	ND
CHLOROFORM	67-66-3	20.0	ND
1,1,1-TRICHLOROETHANE	71-55-6	20.0	ND
CARBON TETRACHLORIDE	56-23-5	20.0	ND
1,1-DICHLOROPROPENE	563-58-6	20.0	ND
BENZENE	71-43-2	20.0	ND
1.2-DICHLOROETHANE	107-06-2	20.0	2610
TRICHLOROETHENE	79-01-6	20.0	ND
1,2-DICHLOROPROPANE	78-87-5	20.0	ND
DIBROMOMETHANE	74-95-3	20.0	ND
BROMODICHLOROMETHANE	75-27-4	20.0	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	20.0	ND
TOLUENE	108-88-3	20.0	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	20.0	ND
1,1,2-TRICHLOROETHANE	79-00-5	20.0	ND
TETRACHLOROETHENE	127-18-4	20.0	ND
1,3-DICHLOROPROPANE	142-28-9	20.0	ND
DIBROMOCHLOROMETHANE	124-48-1	20.0	ND
1,2-DIBROMOETHANE	106-93-4	20.0	ND
CHLOROBENZENE	108-90-7	20.0	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	20.0	ND
ETHYLBENZENE	100-41-4	20.0	ND
XYLENE (M+P)	1330-20-7	20.0	ND
XYLENE (O)	1330-20-7	20.0	ND
STYRENE	100-42-5	20.0	ND
BROMOFORM	75-25-2	20.0	ND
ISOPROPYLBENZENE	98-82-8	20.0	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	20.0	ND
BROMOBENZENE	108-86-1	20.0	ND
1,2,3-TRICHLOROPROPANE	96-18-4	20.0	ND
N-PROPYLBENZENE	103-65-1	20.0	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: W-25-12' LAB NO: 229048 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 11:54 BATCH NO: 021622W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	20.0	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	20.0	ND
4-CHLOROTOLUENE	106-43-4	20.0	ND
TERT-BUTYLBENZENE	98-06-6	20.0	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	20.0	ND
SEC-BUTYLBENZENE	135-98-8	20.0	ND
1,3-DICHLOROBENZENE	541-73-1	20.0	ND
4-ISOPROPYLTOLUENE	99-87-6	20.0	ND
1,4-DICHLOROBENZENE	106-46-7	20.0	ND
N-BUTYLBENZENE	104-51-8	20.0	ND
1,2-DICHLOROBENZENE	95-50-1	20.0	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	20.0	ND
1,2,4-TRICHLOROBENZENE	120-82-1	40.0	ND
HEXACHLOROBUTADIENE	87-68-3	40.0	ND
NAPHTHALENE	91-20-3	40.0	ND
1,2,3-TRICHLOROBENZENE	87-61-6	40.0	ND

0/.

SURROGATE RECOVERY

SURRUGATE RECOVERT	70
DIBROMOFLUOROMETHANE	95
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	98

NOTES:

APPROVED BY: 022 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: W-26-14' LAB NO: 229049 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 12:30 BATCH NO: 021622W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.		SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	1.00	ND
CHLOROMETHANE	74-87-3	1.00	ND
VINYL CHLORIDE	75-01-4	1.00	ND
BROMOMETHANE	74-83-9	1.00	ND
CHLOROETHANE	75-00-3	1.00	ND
TRICHLOROFLUOROMETHANE	75-69-4	1.00	ND
1.1-DICHLOROETHENE	75-35-4	1.00	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	1.00	ND
METHYLENE CHLORIDE	75-09-2	5.00	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	1.00	ND
1.1-DICHLOROETHANE	75-34-3	1.00	ND
CIS-1,2-DICHLOROETHENE	156-59-2	1.00	ND
2,2-DICHLOROPROPANE	594-20-7	1.00	ND
BROMOCHLOROMETHANE	74-97-5	1.00	ND
CHLOROFORM	67-66-3	1.00	ND
1,1,1-TRICHLOROETHANE	71-55-6	1.00	ND
CARBON TETRACHLORIDE	56-23-5	1.00	ND
1,1-DICHLOROPROPENE	563-58-6	1.00	ND
BENZENE	71-43-2	1.00	2.12
1,2-DICHLOROETHANE	107-06-2	1.00	40.8
TRICHLOROETHENE	79-01-6	1.00	40.8
	78-87-5	1.00	ND
		1.00	ND
BROMODICHLOROMETHANE	75-27-4	1.00	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	1.00	ND
	108-88-3	1.00	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	1.00	ND
1,1,2-TRICHLOROETHANE	79-00-5	1.00	ND
TETRACHLOROETHENE	127-18-4	1.00	ND
1,3-DICHLOROPROPANE	142-28-9	1.00	ND
DIBROMOCHLOROMETHANE	124-48-1	1.00	ND
1,2-DIBROMOETHANE	106-93-4	1.00	ND
CHLOROBENZENE	108-90-7	1.00	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	1.00	ND
ETHYLBENZENE	100-41-4	1.00	1.34
XYLENE (M+P)	1330-20-7	1.00	ND
XYLENE (O)	1330-20-7	1.00	ND
STYRENE	100-42-5	1.00	ND
BROMOFORM	75-25-2	1.00	ND
ISOPROPYLBENZENE	98-82-8	1.00	1.94
1,1,2,2-TETRACHLOROETHANE	79-34-5	1.00	ND
BROMOBENZENE	108-86-1	1.00	ND
1,2,3-TRICHLOROPROPANE	96-18-4	1.00	ND
N-PROPYLBENZENE	103-65-1	1.00	2.24

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID: W-26-14' LAB NO: 229049 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 12:30 BATCH NO: 021622W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	1.00	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	1.00	1.01
4-CHLOROTOLUENE	106-43-4	1.00	ND
TERT-BUTYLBENZENE	98-06-6	1.00	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	1.00	1.66
SEC-BUTYLBENZENE	135-98-8	1.00	ND
1,3-DICHLOROBENZENE	541-73-1	1.00	ND
4-ISOPROPYLTOLUENE	99-87-6	1.00	ND
1,4-DICHLOROBENZENE	106-46-7	1.00	ND
N-BUTYLBENZENE	104-51-8	1.00	ND
1,2-DICHLOROBENZENE	95-50-1	1.00	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	1.00	ND
1,2,4-TRICHLOROBENZENE	120-82-1	2.00	ND
HEXACHLOROBUTADIENE	87-68-3	2.00	ND
NAPHTHALENE	91-20-3	2.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	2.00	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	96
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	100

NOTES:

APPROVED BY: _ DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: W-27-12' LAB NO: 229050 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:35 BATCH NO: 021622W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.		SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1,1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1,2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1,2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1.3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID: W-27-12' LAB NO: 229050 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 09:35 BATCH NO: 021622W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	93
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	99

NOTES:

APPROVED BY: 2022 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: 022322-GRAB LAB NO: 229051 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 02:00 BATCH NO: 021622W1

DATE ANALYZED: 03/01/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
DICHLORODIFLUOROMETHANE	75-71-8	20.0	ND
CHLOROMETHANE	74-87-3	20.0	ND
VINYL CHLORIDE	75-01-4	20.0	ND
BROMOMETHANE	74-83-9	20.0	ND
CHLOROETHANE	75-00-3	20.0	ND
TRICHLOROFLUOROMETHANE	75-69-4	20.0	ND
1,1-DICHLOROETHENE	75-35-4	20.0	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	20.0	ND
METHYLENE CHLORIDE	75-09-2	100	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	20.0	ND
1,1-DICHLOROETHANE	75-34-3	20.0	ND
CIS-1,2-DICHLOROETHENE	156-59-2	20.0	ND
2,2-DICHLOROPROPANE	594-20-7	20.0	ND
BROMOCHLOROMETHANE	74-97-5	20.0	ND
CHLOROFORM	67-66-3	20.0	ND
1,1,1-TRICHLOROETHANE	71-55-6	20.0	ND
CARBON TETRACHLORIDE	56-23-5	20.0	ND
1,1-DICHLOROPROPENE	563-58-6	20.0	ND
BENZENE	71-43-2	20.0	ND
1,2-DICHLOROETHANE	107-06-2	20.0	2740
TRICHLOROETHENE	79-01-6	20.0	ND
1,2-DICHLOROPROPANE	78-87-5	20.0	ND
DIBROMOMETHANE	74-95-3	20.0	ND
BROMODICHLOROMETHANE	75-27-4	20.0	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	20.0	ND
TOLUENE	108-88-3	20.0	ND
	100-00-3	20.0	ND
		20.0	ND
	79-00-5	terminal distance of the local distance of t	
	127-18-4	20.0	ND
	142-28-9	20.0	ND ND
	124-48-1	20.0	ND
	106-93-4	20.0	ND
	108-90-7		
	630-20-6	20.0	ND
	100-41-4	20.0	ND
XYLENE (M+P)	1330-20-7	20.0	ND
XYLENE (O)	1330-20-7	20.0	ND
STYRENE	100-42-5	20.0	ND
BROMOFORM	75-25-2	20.0	ND
ISOPROPYLBENZENE	98-82-8	20.0	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	20.0	ND
BROMOBENZENE	108-86-1	20.0	ND
1,2,3-TRICHLOROPROPANE	96-18-4	20.0	ND
N-PROPYLBENZENE	103-65-1	20.0	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2
 SAMPLE ID:
 022322-GRAB

 LAB NO:
 229051

 DATE SAMPLED:
 02/23/2022

 TIME SAMPLED:
 02:00

 BATCH NO:
 021622W1

DATE ANALYZED: 03/01/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	20.0	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	20.0	ND
4-CHLOROTOLUENE	106-43-4	20.0	ND
TERT-BUTYLBENZENE	98-06-6	20.0	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	20.0	ND
SEC-BUTYLBENZENE	135-98-8	20.0	ND
1,3-DICHLOROBENZENE	541-73-1	20.0	ND
4-ISOPROPYLTOLUENE	99-87-6	20.0	ND
1,4-DICHLOROBENZENE	106-46-7	20.0	ND
N-BUTYLBENZENE	104-51-8	20.0	ND
1,2-DICHLOROBENZENE	95-50-1	20.0	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	20.0	ND
1,2,4-TRICHLOROBENZENE	120-82-1	40.0	ND
HEXACHLOROBUTADIENE	87-68-3	40.0	ND
NAPHTHALENE	91-20-3	40.0	ND
1,2,3-TRICHLOROBENZENE	87-61-6	40.0	ND

0/

SURROGATE RECOVERY

SURROGATE RECOVERT	70
DIBROMOFLUOROMETHANE	92
TOLUENE-D8	99
4-BROMOFLUOROBENZENE	97

NOTES:

APPROVED BY: _ 2022 DATE:

METHOD BLANK ID: B021622W1 BATCH NO: 021622W1 DATE ANALYZED: 02/16/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC		
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND		
CHLOROMETHANE	74-87-3	0.500	ND		
VINYL CHLORIDE	75-01-4	0.500	ND		
BROMOMETHANE	74-83-9	0.500	ND		
CHLOROETHANE	75-00-3	0.500	ND		
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND		
1,1-DICHLOROETHENE	75-35-4	0.500	ND		
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND		
METHYLENE CHLORIDE	75-09-2	2.50	ND		
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND		
1,1-DICHLOROETHANE	75-34-3	0.500	ND		
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND		
2.2-DICHLOROPROPANE	594-20-7	0.500	ND		
BROMOCHLOROMETHANE	74-97-5	0.500	ND		
CHLOROFORM	67-66-3	0.500	ND		
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND		
CARBON TETRACHLORIDE	56-23-5	0.500	ND		
1,1-DICHLOROPROPENE	563-58-6	0.500	ND		
BENZENE	71-43-2	0.500	ND		
1,2-DICHLOROETHANE	107-06-2	0.500	ND		
TRICHLOROETHENE	79-01-6	0.500	ND		
1,2-DICHLOROPROPANE	78-87-5	0.500	ND		
DIBROMOMETHANE	74-95-3	0.500	ND		
BROMODICHLOROMETHANE	75-27-4	0.500	ND		
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND		
TOLUENE	108-88-3	0.500	ND		
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND		
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND		
TETRACHLOROETHENE	127-18-4	0.500	ND		
1,3-DICHLOROPROPANE	142-28-9	0.500	ND		
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND		
1,2-DIBROMOETHANE	106-93-4	0.500	ND		
CHLOROBENZENE	108-90-7	0.500	ND		
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND		
ETHYLBENZENE	100-41-4	0.500	ND		
XYLENE (M+P)	1330-20-7	0.500	ND		
XYLENE (O)	1330-20-7	0.500	ND		
STYRENE	100-42-5	0.500	ND		
BROMOFORM	75-25-2	0.500	ND		
ISOPROPYLBENZENE	98-82-8	0.500	ND		
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND		
BROMOBENZENE	108-86-1	0.500	ND		
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND		
N-PROPYLBENZENE	103-65-1	0.500	ND		
2-CHLOROTOLUENE	95-49-8	0.500	ND		

K PRIME, INC. LABORATORY BATCH QC REPORT

METHOD BLANK ID: B021622W1 BATCH NO: 021622W1 DATE ANALYZED: 02/16/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	99
TOLUENE-D8	99
4-BROMOFLUOROBENZENE	90

NOTES:

SAMPLE ID: B021622W1 SPIKE ID: L021622W1 DUPLICATE ID: D021622W1 BATCH NO: 021622W1 SAMPLE TYPE: WATER UNITS: μg/L

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	10.0	ND	8.24	82	60-140
BENZENE	10.0	ND	8.98	90	60-140
TRICHLOROETHENE	10.0	ND	8.19	82	60-140
TOLUENE	10.0	ND	8.89	89	60-140
CHLOROBENZENE	10.0	ND	8.72	87	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	0.500	8.24	8.39	1.8	±20
BENZENE	0.500	8.98	8.87	1.2	±20
TRICHLOROETHENE	0.500	8.19	8.33	1.7	±20
TOLUENE	0.500	8.89	8.79	1.1	±20
CHLOROBENZENE	0.500	8.72	8.60	1.4	±20

NOTES:

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CUSTODY

Invoice to: WEST, I	ínc.		C		N-OF-			2/21	1/22	-		Pa e	e of	•					
Project: Regis.Ha w		21.02 Task 2	1				Loca	ation: 40	1 Co	ncar I	Dr., 9	San I	Mate	0, C	4				
roject Mana er:Sharon Squire, WEST, Inc.							Phone: 415/460-6770 Fax: 415/46						60-6771						
Laborator : KPrime	e, Inc, Santa Ro	sa, CA					Т	urnarou		ne	1	2	3						
Sampler Signature:	Ta -	Parla	_					(day						_	_	_	X		
Sampler Signature:	laar,	Kon						AK		An	alyse	es Re	eques	ted			_	_	
Sample ID	KPI #	2/2/Jate	lime	Type	# Containers	Composite	FPHIs (8015M)	PHd and TPHmo 8015M Reported Serparately	VOCs (5035/8260B)	EDF								U IUH	
W-25-12'	229048	2/23/22	1154	W	464		k	X	X	X									
W-26-12 14	22.049	2/24/22	220	W	+ fr		k	K	x	x									
W-27-12'	22 050	2/23/2	0935	W	4/1		1×	k	x	х									
022322-Grab	229051	2/03/22	0200	W	47		1Ŧ	-	x	x									
	100 m	. , .			ŕ		tt											Γ	
							Ħ											Γ	
							Ħ		-									Γ	
							Ħ											T	
	-	-		1			tt				-							t	
							Ħ											t	
	-	-		-			H				-							t	
		-		-	-		Ħ		-		-				1			t	
NOTES: Dispose of :	samples after 30	-days					++		1			<u> </u>			L	L		1	
	•							X	ED	ľ		Log	Code	e: }		/ESS		÷	
								Global	D:	9	T100	0000	0860	4			_		
Relinquished by: (Sig	mature)		2/24	Date/" /zz		45			eived	l by: (Sign	ature)		2	Date 24 3:4	122		
.nquished by: (Sig	mature)			Date/			1	Rec	eivec	l by: (Sign	ature)			Date			
Samo	2		1	57	7		×		Ĝ	a	u	3	-			125 [U		-	
Report 9946-229	048-229051-01	2	2/2-		2 1-10)	k	felli	11.	Ŋe	ie	~ 11	[P]	-	2 Page	12 = 13:01	5/3	27	

LABORATORY TEST REPORT

ACCT: 9946

TO: MS. SHARON SQUIRE WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

> Phone: 415-460-6770 Email: main@westenvironmental.com

FROM: Richard A. Kagel, Ph.D. RHK Laboratory Director

by 10 3/1/22

SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

The following samples were received at our laboratory on February 28, 2022.

SAMPLE ID	ТҮРЕ	DATE	TIME	KPI LAB #
W-33-2.5-GW	WATER	2/28/2022	10:35	229117
TRIP BLANK	WATER	2/28/2022	10:40	229118

Test results included in this report meet the requirements of ISO/IEC 17025:2017 as verified by the ANSI-ASQ National Accreditation Board (ANAB), and/or the requirements of the California Environmental Laboratory Accreditation Program (CA-ELAP), as applicable. Refer to certificates and scopes of accreditation AT-1427 (ANAB) and CA-ELAP #1532.

Results relate only to the samples tested. This test report shall not be reproduced except in full, without written permission of the laboratory.

If there are questions or concerns regarding this report, please contact your laboratory representative.

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: W-33-2.5-GW LAB NO: 229117 DATE SAMPLED: 02/28/2022 TIME SAMPLED: 10:35 BATCH NO: 021822W1

DATE ANALYZED: 03/01/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.		SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1,1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1,2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1,3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

SAMPLE ID: W-33-2.5-GW LAB NO: 229117 DATE SAMPLED: 02/28/2022 TIME SAMPLED: 10:35 BATCH NO: 021822W1

DATE ANALYZED: 03/01/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENÉ	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	91
TOLUENE-D8	99
4-BROMOFLUOROBENZENE	97

NOTES:

APPROVED BY: DZZ DATE:

K PRIME, INC.

LABORATORY BATCH QC REPORT

METHOD BLANK ID: B021822W1 BATCH NO: 021822W1 DATE ANALYZED: 02/18/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1,1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1,2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1,2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1,3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND
2-CHLOROTOLUENE	95-49-8	0.500	ND

K PRIME, INC. LABORATORY BATCH QC REPORT

METHOD BLANK ID: B021822W1 BATCH NO: 021822W1 DATE ANALYZED: 02/18/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE CONC
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	97
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	102

NOTES:

K PRIME, INC. LABORATORY BATCH QC REPORT

 SAMPLE ID:
 B021822W1

 SPIKE ID:
 L021822W1

 DUPLICATE ID:
 D021822W1

 BATCH NO:
 021822W1

 SAMPLE TYPE:
 WATER

 UNITS:
 µg/L

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	10.0	ND	7.39	74	60-140
BENZENE	10.0	ND	7.94	79	60-140
TRICHLOROETHENE	10.0	ND	8.11	81	60-140
TOLUENE	10.0	ND	8.48	85	60-140
CHLOROBENZENE	10.0	ND	8.26	83	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	0.500	7.39	7.27	1.6	±20
BENZENE	0.500	7.94	7.95	0.1	±20
TRICHLOROETHENE	0.500	8.11	8.14	0.4	±20
TOLUENE	0.500	8.48	8.49	0.1	±20
CHLOROBENZENE	0.500	8.26	8.38	1.4	±20

NOTES:

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

SAMPLE ANALYSIS/COMPOSITE REQUEST FORM

CHAIN-OF-CUSTODY

Invoice to: WEST, In	ic.						Date	e: Z	128	122		Page	e of	1				
Project: Regis.Haywa	rdPark; WO	21.02 Task 2	2				Loca	ation	: 401 C	Conca	ar D	r., S	an M	ateo	, CA			
Project Manager:Sha	ron Squire, W	EST, Inc.					Pho	ne: 4	15/460)-677	0	_		Fa	ax: 4	15/46	50-67	71
Laboratory: KPrime,	Inc, Santa Ro	osa, CA					Tur		und tii	me	1	2	3	5	7	10	Std.	_
Sampler Signature:	ma	la	01	-				(da	ys)	_		_					X	
U U	ber	se	p.4							Α	naly	yses l	Requ	ested	I			
Sample ID	KPI #	Date	Time	Type	# Containers	Composite	VOCs (5035/8260B)	EDF										НОГД
10/-33-7 5-1-1-	220.00	2/28/22		W	#		x	X		+					-	-		
W-33-2.5-G. Trip Mantx	229 11+			W	2				+	+	-				-			X
Jrip plant	229118	2/29/27	1190	W	6	-			+	+	-	-	-	-	-	-		~
		-		<u> </u>				_	\vdash	\rightarrow	_				_	-		
				1														
		-		-	-	-	-	-	+	+	-	-	-	-	-	-	\vdash	-
					-			_	\vdash	\rightarrow	_	_	_		_	-		-
	_			_								_						
	-	-		-	1					+					-			-
		-		-	-	-	-	-	+ +	+	-	-	-	-	-	-	\vdash	-
				L			-			\rightarrow	_			_				
NOTES: Dispose of sa	amples after 30)-days						x	EDF			Log	Code		W	/ESS		
												-				200		6
								Glob	oal ID:]	Г100	0000	08604	4	_			e:
Relinquished by: (Sign	ature)			Date/7	Time		1	R	eceived	l by:	(Sig	natu	re)	-		Date	/Time	e
man A	Atom		21.0	,	121	-			-	2 10	_	2			2/2	28/2	2	
your h			2/26/	22	17	5		<	56	ku	1	P			1		31.	5
Relinquished by: (Sign	ature)			Date/7				R	eceived	t by:	(Sig	natu	re)			Pate	· · ·	e
1.000	D		2/28	22	_		1.5	1	00	1	-				21	128	12	2
SM	uns		1	1	14	16	1	Jel	ly	1	4	24	ent	RF.	1	4	0	
Report 9946-229117	-229118-01				10		1	/	0	1.9	1					Page	7 of 7	

9946

LABORATORY TEST REPORT

ACCT: 9946

TO: MS. SHARON SQUIRE WEST ENVIRONMENTAL S&T 711 GRAND AVENUE, SUITE 220 SAN RAFAEL, CA 94901

> Phone: 415-460-6770 Email: main@westenvironmental.com

FROM: Richard A. Kagel, Ph.D. R PARC Laboratory Director

3/3/22

SUBJECT: LABORATORY RESULTS FOR YOUR PROJECT: REGIS HAYWARDPARK; WO 21.02 TASK 2

The following samples were received at our laboratory on February 25, 2022.

SAMPLE ID	TYPE	DATE	TIME	KPI LAB #
MW-1	WATER	2/23/2022	16:20	229052
MW-2	WATER	2/23/2022	10:45	229053
MW-3	WATER	2/24/2022	11:05	229054
MW-4	WATER	2/23/2022	13:32	229055
MW-5	WATER	2/24/2022	8:53	229056
MW-6	WATER	2/23/2022	15:22	229057
MW-7	WATER	2/23/2022	14:26	229058
MW-8	WATER	2/24/2022	10:17	229059
MW-9	WATER	2/24/2022	12:25	229060
022422-MW	WATER	2/24/2022	8:00	229061

Test results included in this report meet the requirements of ISO/IEC 17025:2017 as verified by the ANSI-ASQ National Accreditation Board (ANAB), and/or the requirements of the California Environmental Laboratory Accreditation Program (CA-ELAP), as applicable. Refer to certificates and scopes of accreditation AT-1427 (ANAB) and CA-ELAP #1532.

Results relate only to the samples tested. This test report shall not be reproduced except in full, without written permission of the laboratory.

If there are questions or concerns regarding this report, please contact your laboratory representative.

K Prime, Inc. 3621 Westwind Blvd. Santa Roia, CA 95403 Tel: (707)-527-7574 Fax: (707)-527-7879

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

METHOD: GRO-GASOLINE RANGE ORGANICS REFERENCE: EPA 8015B

SAMPLE TYPE: WATER UNITS: mg/L

SAMPLE ID	LAB NO.	DATE	TIME	BATCH NO	DATE	MRL	SAMPLE	GRO PATTERN
MW-1	229052	02/23/2022	16:20	021822W1	02/25/2022	0.0500	ND	
MW-2	229053	02/23/2022	10:45	021822W1	02/25/2022	0.0500	ND	
MW-3	229054	02/24/2022	11:05	021822W1	02/25/2022	0.0500	ND	
MW-4	229055	02/23/2022	13:32	021822W1	02/25/2022	0.0500	ND	
MW-5	229056	02/24/2022	08:53	021822W1	02/25/2022	0.0500	ND	
MW-6	229057	02/23/2022	15:22	021822W1	02/25/2022	0.0500	ND	
MW-7	229058	02/23/2022	14:26	021822W1	02/25/2022	0.0500	ND	5
MW-8	229059	02/24/2022	10:17	021822W1	02/25/2022	0.0500	ND	
MW-9	229060	02/24/2022	12:25	021822W1	02/25/2022	0.0500	0.0549	1
022422-MW	229061	02/24/2022	08:00	021822W1	02/25/2022	0.0500	0.0508	

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED METHOD REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

MRL - METHOD REPORTING LIMIT

AE - UNKNOWN HYDROCARBON WITH A SINGLE PEAK

AN - UNKNOWN HYDROCARBON WITH SEVERAL PEAKS

AS - HEAVIER HYDROCARBON THAN GASOLINE CONTRIBUTING TO GRO VALUE

CO - HYDROCARBON RESPONSE IN GASOLINE RANGE BUT DOES NOT RESEMBLE GASOLINE

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-1 LAB NO: 229052 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 16:20 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE	
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND	
CHLOROMETHANE	74-87-3	0.500	ND	
VINYL CHLORIDE	75-01-4	0.500	ND	
BROMOMETHANE	74-83-9	0.500	ND	
CHLOROETHANE	75-00-3	0.500	ND	
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND	
1,1-DICHLOROETHENE	75-35-4	0.500	ND	
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND	
METHYLENE CHLORIDE	75-09-2	2.50	ND	
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND	
1.1-DICHLOROETHANE	75-34-3	0.500	ND	
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND	
2.2-DICHLOROPROPANE	594-20-7	0.500	ND	
BROMOCHLOROMETHANE	74-97-5	0.500	ND	
CHLOROFORM	67-66-3	0.500	ND	
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND	
CARBON TETRACHLORIDE	56-23-5	0.500	ND	
1,1-DICHLOROPROPENE	563-58-6	0.500	ND	
BENZENE	71-43-2	0.500	ND	
1,2-DICHLOROETHANE	107-06-2	0.500	ND	
TRICHLOROETHENE	79-01-6	0.500	ND	
1,2-DICHLOROPROPANE	78-87-5	0.500	ND	
DIBROMOMETHANE	74-95-3	0.500	ND	
BROMODICHLOROMETHANE	75-27-4	0.500	ND	
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND	
TOLUENE	108-88-3	0.500	ND	
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND	
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND	
TETRACHLOROETHENE	127-18-4	0.500	ND	
1,3-DICHLOROPROPANE	142-28-9	0.500	ND	
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND	
1,2-DIBROMOETHANE	106-93-4	0.500	ND	
CHLOROBENZENE	108-90-7	0.500	ND	
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND	
ETHYLBENZENE	100-41-4	0.500	ND	
XYLENE (M+P)	1330-20-7	0.500	ND	
XYLENE (O)	1330-20-7	0.500	ND	
STYRENE	100-42-5	0.500	ND	
BROMOFORM	75-25-2	0.500	ND	
ISOPROPYLBENZENE	98-82-8	0.500	ND	
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND	
BROMOBENZENE	108-86-1	0.500	ND	
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND	
N-PROPYLBENZENE	103-65-1	0.500	ND	

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-1 LAB NO: 229052 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 16:20 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	94
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	98

NOTES:

APPROVED BY: 22 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-2 LAB NO: 229053 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:45 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE	
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND	
CHLOROMETHANE	74-87-3	0.500	ND	
VINYL CHLORIDE	75-01-4	0.500	ND	
BROMOMETHANE	74-83-9	0.500	ND	
CHLOROETHANE	75-00-3	0.500	ND	
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND	
1,1-DICHLOROETHENE	75-35-4	0.500	ND	
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND	
METHYLENE CHLORIDE	75-09-2	2.50	ND	
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND	
1.1-DICHLOROETHANE	75-34-3	0.500	ND	
CIS-1.2-DICHLOROETHENE	156-59-2	0.500	ND	
2.2-DICHLOROPROPANE	594-20-7	0.500	ND	
BROMOCHLOROMETHANE	74-97-5	0.500	ND	
CHLOROFORM	67-66-3	0.500	ND	
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND	
CARBON TETRACHLORIDE	56-23-5	0.500	ND	
1.1-DICHLOROPROPENE	563-58-6	0.500	ND	
BENZENE	71-43-2	0.500	ND	
1.2-DICHLOROETHANE	107-08-2	0.500	ND	
TRICHLOROETHENE	79-01-6	0.500	ND	
1.2-DICHLOROPROPANE	78-87-5	0.500	ND	
DIBROMOMETHANE	74-95-3	0.500	ND	
BROMODICHLOROMETHANE	75-27-4	0.500	ND	
TRANS-1.3-DICHLOROPROPENE	10061-02-6	0.500	ND	
TOLUENE	108-88-3	0.500	ND	
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND	
1.1.2-TRICHLOROETHANE	79-00-5	0.500	ND	
TETRACHLOROETHENE	127-18-4	0.500	ND	
1.3-DICHLOROPROPANE	142-28-9	0.500	ND	
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND	
1.2-DIBROMOETHANE	106-93-4	0.500	ND	
CHLOROBENZENE	108-90-7	0.500	ND	
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND	
ETHYLBENZENE	100-41-4	0.500	ND	
XYLENE (M+P)	1330-20-7	0.500	ND	
XYLENE (O)	1330-20-7	0.500	ND	
STYRENE	100-42-5	0.500	ND	
BROMOFORM	75-25-2	0.500	ND	
ISOPROPYLBENZENE	98-82-8	0.500	ND	
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND	
BROMOBENZENE	108-86-1	0.500	ND	
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND	
N-PROPYLBENZENE	103-65-1	0.500	ND	

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-2 LAB NO: 229053 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 10:45 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

20

SURROGATE	RECOVERY	

SURROGATE RECOVERT	70
DIBROMOFLUOROMETHANE	97
TOLUENE-DB	99
4-BROMOFLUOROBENZENE	99

NOTES:

APPROVED BY: DATE:

K PRIME, INC.

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-3 LAB NO: 229054 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 11:05 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1.1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1.2-DICHLOROETHENE	156-60-5	0.500	ND
1.1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2.2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1.2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1,3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-3 LAB NO: 229054 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 11:05 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1.2.3-TRICHLOROBENZENE	87-61-6	1.00	ND

3,0

SURROGATE RECOVERY

91	
101	
99	
	101

NOTES:

APPROVED BY: 22 DATE:

K PRIME, INC.

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-4 LAB NO: 229055 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 13:32 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2.2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1.2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1.1.2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1.3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1.2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1.2.3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-4 LAB NO: 229055 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 13:32 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	92
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	98

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-5 LAB NO: 229056 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 08:53 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2.2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1,2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1,3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-5 LAB NO: 229056 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 08:53 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND.
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

ev.

SURROGATE RECOVERY

70
92
100
98

NOTES:

APPROVED BY: 07.2 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-6 LAB NO: 229057 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 15:22 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1.1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1.1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1,2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1,3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

Report 9946-229052-229061-01

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-6 LAB NO: 229057 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 15:22 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

3.0

The second second second	and the set of the local set.	
SURROGAT	E BEOOL	100000
STREETAL		PERT.

JORROGATE RECOVERT	
DIBROMOFLUOROMETHANE	93
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	99

NOTES:

APPROVED BY: DATE:

K PRIME, INC.

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-7 LAB NO: 229058 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 14:26 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-8	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1,1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1.2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1,2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1.1.2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1.3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1.2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1.1.1.2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2.3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-7 LAB NO: 229058 DATE SAMPLED: 02/23/2022 TIME SAMPLED: 14:26 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

%

SURROGATE	RECOVERY

DIBROMOFLUOROMETHANE	95
TOLUENE-D8	102
4-BROMOFLUOROBENZENE	101

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-8 LAB NO: 229059 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 10:17 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1,1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1,1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1,2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1,2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1,3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1,2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-8 LAB NO: 229059 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 10:17 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-8	0.500	ND
1.4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

10.0

SURROGATE	RECOVERY
SUNNOGALE	REGOVERI

70
91
100
99

NOTES:

APPROVED BY: DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-9 LAB NO: 229060 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 12:25 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1.2-DICHLOROETHENE	156-60-5	0.500	ND
1.1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	0.530
1,2-DICHLOROETHANE	107-06-2	0.500	5.21
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1,1,2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1.3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1.2-DIBROMOETHANE	106-93-4	0.500	1.39
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: MW-9 LAB NO: 229060 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 12:25 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

07

SURROGATE RECOVERY

70
90
100
100
1

NOTES:

APPROVED BY: 12022 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: 022422-MW LAB NO: 229061 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 08:00 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO. REPORTING LIMIT		SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1.1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1.1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2,2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1,1,1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	0.540
1.2-DICHLOROETHANE	107-06-2	0.500	5.08
TRICHLOROETHENE	79-01-6	0.500	ND
1,2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1.1.2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1.3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1.2-DIBROMOETHANE	106-93-4	0.500	1.74
CHLOROBENZENE	108-90-7	0.500	ND
1.1.1.2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	0.500
XYLENE (0)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND

K PRIME, INC.

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2 SAMPLE ID: 022422-MW LAB NO: 229061 DATE SAMPLED: 02/24/2022 TIME SAMPLED: 08:00 BATCH NO: 021722W1

DATE ANALYZED: 02/28/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260 SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
2-CHLOROTOLUENE	95-49-8	0.500	ND
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	106-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

84

SURROGATE RECOVERY

SURROGATE RECOVERT	78
DIBROMOFLUOROMETHANE	88
TOLUENE-D8	100
4-BROMOFLUOROBENZENE	101

NOTES:

APPROVED BY: 2022 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

METHOD: DRO REFERENCE: EPA 8015B

SAMPLE TYPE: WATER UNITS: mg/L

SAMPLE ID	LAB NO.	DATE	BATCH	EXTRACT DATE	DATE	MRL	SAMPLE	DRO
MW-1	229052	02/23/2022	021522W1	02/28/2022	02/28/2022	0.0532	0.434	100000000000000000000000000000000000000
MW-2	229053	02/23/2022	021522W1	02/28/2022	02/28/2022	0.0568	1.13	AC
MW-3	229054	02/24/2022	021522W1	02/28/2022	03/01/2022	0.0541	1.52	
MW-4	229055	02/23/2022	021522W1	02/28/2022	03/01/2022	0.0526	1.14	
MW-5	229056	02/24/2022	021522W1	02/28/2022	03/01/2022	0.0581	3.32	
MW-6	229057	02/23/2022	022822W1	02/28/2022	03/01/2022	0.0556	2.72	
MW-7	229058	02/23/2022	022822W1	02/28/2022	03/01/2022	0.0556	0.927	
MW-8	229059	02/24/2022	022822W1	02/28/2022	03/01/2022	0.0575	0.470	AC
MW-9	229060	02/24/2022	022822W1	02/28/2022	03/01/2022	0.0526	3,41	AN

NOTES:

DRO	Diesel Range Organics (C12-C23)
ND	Not Detected at or above the stated MRL
NA	Not Applicable or Available
MRL	Method Reporting Limit
AD	Typical Pattern for Diesel
AM	Hydrocarbon response is in the C12-C22 range
AC	Heavier hydrocarbons contributing to diesel range quantitation
AJ	Heavier hydrocarbon than diesel
AK	Lighter hydrocarbon than diesel
AE	Unknown hydrocarbon with a single peak
AN	Unknown hydrocarbon with several peaks

APPROVED BY: HB 3/3/22 DATE:

K PRIME PROJECT: 9946 CLIENT PROJECT: REGIS.HAYWARDPARK; WO 21.02 TASK 2

METHOD: HRO REFERENCE: EPA 8015B

 SAMPLE ID	LAB NO.	DATE SAMPLED	BATCH ID	DATE	DATE	MRL	SAMPLE	HRO
MW-1	229052	02/23/2022	021522W1	02/28/2022	02/28/2022	0.0532	0.170	
MW-2	229053	02/23/2022	021522W1	02/28/2022	02/28/2022	0.0568	1.14	
MW-3	229054	02/24/2022	021522W1	02/28/2022	03/01/2022	0.0541	1.12	
MW-4	229055	02/23/2022	021522W1	02/28/2022	03/01/2022	0.0526	0.924	
MW-5	229056	02/24/2022	021522W1	02/28/2022	03/01/2022	0.0581	2.37	
MW-6	229057	02/23/2022	022822W1	02/28/2022	03/01/2022	0.0556	1.68	
MW-7	229058	02/23/2022	022822W1	02/28/2022	03/01/2022	the later of the second s	0.624	
MW-8	229059	02/24/2022	022822W1	02/28/2022	03/01/2022	0.0575	0.585	
MW-9	229060	02/24/2022	022822W1	02/28/2022	03/01/2022	0.0526	0.766	

NOTES:	
HRO	Heavy Range Organics (C24-C34)
ND	Not Detected at or above the stated MRL
NA	Not Applicable or Available
MRL	Method Reporting Limit
AE	Unknown hydrocarbon with a single peak
AN	Unknown hydrocarbon with several peaks

APPROVED BY: DATE: 122 3/3

K PRIME, INC. LABORATORY QUALITY CONTROL REPORT

METHOD: GRO-GASOLINE RANGE ORGANICS REFERENCE: EPA 8015B

METHOD BLANK ID: B021822W1 BATCH NO: 021822W1 SAMPLE TYPE: WATER UNITS: mg/L

DATE EXTRACTED: 02/18/2022 DATE ANALYZED: 02/18/2022

COMPOUND NAME	REPORTING	SAMPLE CONC	
TPH-G	0.0500	ND	

SAMPLE ID: L021822W1 DUPLICATE ID: D021822W1 BATCH NO: 021822W1 SAMPLE TYPE: WATER UNITS: mg/L

DATE EXTRACTED: 02/18/2022 DATE ANALYZED: 02/18/2022

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
TPH-G	0.500	ND	0.486	97	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
TPH-G	0.0500	0.486	0.485	0.2	±20

NOTES:

K PRIME, INC. LABORATORY BATCH QC REPORT

METHOD BLANK ID: B021722W1 BATCH NO: 021722W1 DATE ANALYZED: 02/17/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
DICHLORODIFLUOROMETHANE	75-71-8	0.500	ND
CHLOROMETHANE	74-87-3	0.500	ND
VINYL CHLORIDE	75-01-4	0.500	ND
BROMOMETHANE	74-83-9	0.500	ND
CHLOROETHANE	75-00-3	0.500	ND
TRICHLOROFLUOROMETHANE	75-69-4	0.500	ND
1,1-DICHLOROETHENE	75-35-4	0.500	ND
TRICHLOROTRIFLUOROETHANE	76-13-1	0.500	ND
METHYLENE CHLORIDE	75-09-2	2.50	ND
TRANS-1,2-DICHLOROETHENE	156-60-5	0.500	ND
1.1-DICHLOROETHANE	75-34-3	0.500	ND
CIS-1,2-DICHLOROETHENE	156-59-2	0.500	ND
2.2-DICHLOROPROPANE	594-20-7	0.500	ND
BROMOCHLOROMETHANE	74-97-5	0.500	ND
CHLOROFORM	67-66-3	0.500	ND
1.1.1-TRICHLOROETHANE	71-55-6	0.500	ND
CARBON TETRACHLORIDE	56-23-5	0.500	ND
1.1-DICHLOROPROPENE	563-58-6	0.500	ND
BENZENE	71-43-2	0.500	ND
1.2-DICHLOROETHANE	107-06-2	0.500	ND
TRICHLOROETHENE	79-01-6	0.500	ND
1.2-DICHLOROPROPANE	78-87-5	0.500	ND
DIBROMOMETHANE	74-95-3	0.500	ND
BROMODICHLOROMETHANE	75-27-4	0.500	ND
TRANS-1,3-DICHLOROPROPENE	10061-02-6	0.500	ND
TOLUENE	108-88-3	0.500	ND
CIS-1,3-DICHLOROPROPENE	10061-01-5	0.500	ND
1.1.2-TRICHLOROETHANE	79-00-5	0.500	ND
TETRACHLOROETHENE	127-18-4	0.500	ND
1.3-DICHLOROPROPANE	142-28-9	0.500	ND
DIBROMOCHLOROMETHANE	124-48-1	0.500	ND
1.2-DIBROMOETHANE	106-93-4	0.500	ND
CHLOROBENZENE	108-90-7	0.500	ND
1,1,1,2-TETRACHLOROETHANE	630-20-6	0.500	ND
ETHYLBENZENE	100-41-4	0.500	ND
XYLENE (M+P)	1330-20-7	0.500	ND
XYLENE (O)	1330-20-7	0.500	ND
STYRENE	100-42-5	0.500	ND
BROMOFORM	75-25-2	0.500	ND
ISOPROPYLBENZENE	98-82-8	0.500	ND
1,1,2,2-TETRACHLOROETHANE	79-34-5	0.500	ND
BROMOBENZENE	108-86-1	0.500	ND
1,2,3-TRICHLOROPROPANE	96-18-4	0.500	ND
N-PROPYLBENZENE	103-65-1	0.500	ND
2-CHLOROTOLUENE	95-49-8	0.500	ND

K PRIME, INC.

LABORATORY BATCH QC REPORT

METHOD BLANK ID: B021722W1 BATCH NO: 021722W1 DATE ANALYZED: 02/17/2022

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

SAMPLE TYPE: WATER UNITS: ug/L

COMPOUND NAME	CAS NO.	REPORTING LIMIT	SAMPLE
1,3,5-TRIMETHYLBENZENE	108-67-8	0.500	ND
4-CHLOROTOLUENE	108-43-4	0.500	ND
TERT-BUTYLBENZENE	98-06-6	0.500	ND
1,2,4-TRIMETHYLBENZENE	95-63-6	0.500	ND
SEC-BUTYLBENZENE	135-98-8	0.500	ND
1,3-DICHLOROBENZENE	541-73-1	0.500	ND
4-ISOPROPYLTOLUENE	99-87-6	0.500	ND
1,4-DICHLOROBENZENE	106-46-7	0.500	ND
N-BUTYLBENZENE	104-51-8	0.500	ND
1,2-DICHLOROBENZENE	95-50-1	0.500	ND
1,2-DIBROMO-3-CHLOROPROPANE	96-12-8	0.500	ND
1,2,4-TRICHLOROBENZENE	120-82-1	1.00	ND
HEXACHLOROBUTADIENE	87-68-3	1.00	ND
NAPHTHALENE	91-20-3	1.00	ND
1,2,3-TRICHLOROBENZENE	87-61-6	1.00	ND

SURROGATE RECOVERY	%
DIBROMOFLUOROMETHANE	94
TOLUENE-D8	101
4-BROMOFLUOROBENZENE	99

NOTES:

K PRIME, INC. LABORATORY BATCH QC REPORT

SAMPLE ID: B021722W1 SPIKE ID: L021722W1 DUPLICATE ID: D021722W1 BATCH NO: 021722W1 SAMPLE TYPE: WATER UNITS: µg/L

METHOD: VOLATILE ORGANIC COMPOUNDS REFERENCE: EPA 5030/8260

ACCURACY (MATRIX SPIKE)

COMPOUND NAME	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	10.0	ND	7.15	72	60-140
BENZENE	10.0	ND	7.62	76	60-140
TRICHLOROETHENE	10.0	ND	8.01	80	60-140
TOLUENE	10.0	ND	7.91	79	60-140
CHLOROBENZENE	10.0	ND	7.56	76	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
1,1 DICHLOROETHENE	0.500	7.15	7.16	0.1	±20
BENZENE	0.500	7.62	7.42	2.7	±20
TRICHLOROETHENE	0.500	8.01	7.92	1.1	±20
TOLUENE	0.500	7.91	7.85	0.8	±20
CHLOROBENZENE	0.500	7.56	7.41	2.0	±20

NOTES:

ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT

NA - NOT AVAILABLE OR APPLICABLE

K PRIME, INC.	BATCH ID:	021522W1
LABORATORY QUALITY CONTROL REPORT	DATE EXTRACTED:	02/15/2022
	DATE ANALYZED:	02/15/2022
METHOD: DRO	SAMPLE TYPE:	WATER
REFERENCE: EPA 8015B	UNITS:	mg/L

METHOD BLANK ID: B021522W1

COMPOUND NAME	REPORTING	SAMPLE
DRO	0.0500	ND

SAMPLE ID: L021522W1 DUPLICATE ID: D021522W1

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
DRO	2.50	ND	2.32	93	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS
	LIMIT	RESULT	RESULT	(%)	(%)
DRO	0.0500	2.32	2.40	3.4	±20

NOTES: DRO - DIESEL RANGE ORGANICS (C12-C34) ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT NA - NOT APPLICABLE OR AVAILABLE

K PRIME, INC.	BATCH ID:	022822W1
LABORATORY QUALITY CONTROL REPORT	DATE EXTRACTED:	02/28/2022
	DATE ANALYZED:	02/28/2022
METHOD: DRO	SAMPLE TYPE:	WATER
REFERENCE: EPA 8015B	UNITS:	mg/L

METHOD BLANK ID: B022822W1

COMPOUND NAME	REPORTING	SAMPLE
	LIMIT	CONC
DRO	0.0500	ND

SAMPLE ID: L022822W1 DUPLICATE ID: D022822W1

ACCURACY (MATRIX SPIKE)

PARAMETER	SPIKE	SAMPLE	SPIKE	RECOVERY	LIMITS
	ADDED	RESULT	RESULT	(%)	(%)
DRO	2.50	ND	2.40	96	60-140

PRECISION (SPIKE DUPLICATE)

COMPOUND NAME	REPORTING	SPIKE	DUPLICATE	RPD	LIMITS		
	LIMIT	RESULT	RESULT	(%)	(%)		
DRO	0.0500	2.40	2.45	2.2	±20		

NOTES:

DRO - DIESEL RANGE ORGANICS (C12-C34) ND - NOT DETECTED AT OR ABOVE THE STATED REPORTING LIMIT

NA - NOT APPLICABLE OR AVAILABLE

711 Grand Avenue, Suite 220 San Rafael, California 94901 415.460.6770 • Fax 415.460.6771 main@westenvironmental.com

Invoice to: WEST,	Inc		C.	******	-OF-	-03			24/2	17		Page	. 1 .		11	46	-	
Project: Regis.HaywardPark; WO 21.02 Task 2						Date: 2/2 1/2 2 Page 1 of 1 Location: 401 Concar Dr., San Mateo, CA												
Project Manager:Sharon Squire, WEST, Inc.						Phone: 415/460-6770 Fax: 415/460-67										71		
Laboratory: KPrime, Inc, Santa Rosa, CA											2	3	5	7	10	Std.		
Sampler Signature:						(day	/s)								X			
					Analyses Requested													
Sample ID	KPI #	Date	Time	Type	# Containers	Composite	TPHg (8015M)	TPHd and TPHmo (8015M) Reported Serparately	VOCs (5035/8260B)	EDF								HOLD
MW-1	229052	2/23/22	1690	w	5	+	x	x	x	x								
MW-2	229053	7/23/22	1045	w	5	-	x	x	x	x								
MW-3	229054	2/24/22	1105	w	5	-	x	x	x	x								
MW-4	229055	3/23/22	1332	w	5	4	x	x	x	x								
MW-5	229050	2/24/22	0853	w	5	-	x	x	x	x								
MW-6	229057	2/13/22	1522	w	5	+	x	x	x	x								
MW-7	229058	7/23/2	1426	w	5	- 7.	x	x	x	x								
MW-8	229059	7/24/22	1017	w	5	-	x	x	x	x								
MW-9	229040	3/21/22		w	5	-	x	x	x	x								
022422-MW	229001	2/24hz	0800	w	\$4	+	-	**	x	x								-
1								~			5				1	E	11	-
		-	-										7		10		M	
NOTES: Dispose of	samples after 30-	days						X Global	EDI	F	T10	Log			w	ESS	2	60
Relinquished by: (Signature)			Date/Time 7/24/22 3.45.			Received by: (Signature)								Date/Time 7/24/22 13:45				
Relinquished by:-(Signature)			Date/Time 2/25/22 × 1027			Received by: (Signature) Shund Keely Mein KPI								Date/Time 2/25/22 ×1627				